Refine search
Results 1-10 of 35
Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells
2018
Sun, Yingyin | Shen, Jingcao | Zeng, Lin | Yang, Dan | Shao, Shuxin | Wang, Jinglei | Wei, Jie | Xiong, Junping | Chen, Jiaxiang
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry. DEHP can cause testicular atrophy, yet the exact mechanism remains unclear. In this study, male mice were intragastrically (i.g.) administered with 0, 100, 200 or 400 mg DEHP/kg/day for 21 days. We found that DEHP caused disintegration of the germinal epithelium and decreased sperm density in the epididymis. Furthermore, there was a significant increase in the levels of cleaved Caspase-8, cleaved Caspase-3 and Bax proteins and a decrease in Bcl2 protein. The results indicated that DEHP could induce apoptosis of the testis tissue. Meanwhile, DEHP significantly induced autophagy in the testis tissues with increases in LC3-II, Atg5 and Beclin-1 proteins. The serum testosterone concentration decreased in the DEHP-treated group, implying that DEHP might lead to Leydig cell damage. Furthermore, oxidative stress was induced by DEHP in the testis. To further investigate the potential mechanism, mouse TM3 Leydig cells were treated with 0–80 μM DEHP for 48 h. DEHP significantly inhibited cell viability and induced cell apoptosis. Oxidative stress was involved in DEHP-induced apoptosis as N-Acetyl-L-cysteine (NAC), an inhibitor of oxidative stress, could rescue the inhibition of cell viability and induction of apoptosis by DEHP. Similar to the in vivo findings, DEHP could also induce cell autophagy. However, inhibition of autophagy by 3-Methyladenine (3-MA) significantly increased cell viability and inhibited apoptosis. Taken together, oxidative stress was involved in DEHP-induced apoptosis and autophagy of mouse TM3 Leydig cells, and autophagy might play a cytotoxic role in DEHP-induced cell apoptosis.
Show more [+] Less [-]Combination of high-fat diet and cadmium impairs testicular spermatogenesis in an m6A-YTHDF2-dependent manner
2022
Xiong, Yong-Wei | Tan, Lu-Lu | Zhang, Jin | Zhu, Hua-Long | Zheng, Xin-Mei | Chang, Wei | Gao, Lan | Wei, Tian | Xu, De-Xiang | Wang, Hua
Environmental cadmium (Cd) or high-fat diet (HFD) exposure alone are risk factors of male infertility. However, the effect and mechanism of co-exposure to HFD and Cd on sperm quality remain unclear. This study was aimed to explore the combined effects of HFD and Cd on spermatogenesis as well as its m6A-dependent mechanism in vivo and in vitro. As a result, co-exposure of HFD and Cd resulted in a significant decrease in the number of mature testicular seminiferous tubules and epididymis sperm quantity in mice, compared with Cd or HFD exposure alone. Correspondingly, the mRNAs expression of Smc3(spermatocytes marker), Acrv1(round spermatids marker) and Lzumo3(elongated spermatids marker) were downregulated in HFD and Cd group. Furthermore, combined exposure downregulated the expression of meiosis-related proteins (STRA8 and SYCP3), increased the m6A level of Stra8, and upregulated the expression of m6A-related proteins (METTL3 and YTHDF2) in mouse spermatocytes. Mechanistically, the above-mentioned impacts caused by co-exposure were markedly restored by Mettl3 siR and Ythdf2 siR. In addition, RNA stability assay showed that Ythdf2 siR obviously reversed co-exposure-increased Stra8 mRNA degradation rate in actinomycin-D-treated mouse spermatocytes. Meanwhile, excess ROS was observed in combined-exposure group, and a free radical scavenger N-tert-Butyl-α-phenylnitrone (PBN) attenuated co-exposure-upregulated expression of METTL3 and YTHDF2 in mouse spermatocytes. These results suggested that combination of HFD and Cd impaired spermatogenesis by degrading Stra8 in an m6A-YTHDF2-dependent manner via ROS activation.
Show more [+] Less [-]Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice
2021
Liu, Jianhui | Li, Xiangyang | Zhou, Guiqing | Zhang, Yue | Sang, Yujian | Wang, Ji | Li, Yanbo | Ge, Wei | Sun, Zhiwei | Zhou, Xianqing
Researches have shown that silica nanoparticles (SiNPs) could reduce both the quantity and quality of sperm. However, the mechanism of toxicity induced by SiNPs in the male reproductive system is still unclear. In this study, male mice were randomly divided into a control group, and SiNPs treated group (20 mg/kg dose; n = 30 per group). Half of the mice per group were sacrificed on 35 days and the remaining on 50 days of the SiNPs exposure. SiNPs were found to decrease sperm count and mobility, increase the sperm abnormality rate, and damage the testes' structure. Furthermore, SiNPs decreased the protein levels of Protamine 1(PRM1) and elevated the histones' levels and suppressed the chromatin condensation of sperm. There was a significant reduction of the ubiquitinated H2A (ubH2A)/H2B (ubH2B) and RING finger protein 8 (RNF8) levels in the spermatid nucleus, while the RNF8 level in the spermatid cytoplasm increased evidently. The protein expression levels of PIWI-like protein 1(MIWI) in the late spermatids significantly increased on day 35 of SiNPs exposure. After 15 days of the withdrawal, the sperm parameters and protamine levels, and histones in the epididymal sperm were unrecovered; however, the changes in testis induced by SiNPs were recovered. Our results suggested that SiNPs could decrease the RNF8 level in the nucleus of spermatid either by upregulating of the expression of MIWI or by inhibiting its degradation. This resulted in the detention of RNF8 in the cytoplasm that maybe inhibited the RNF8-mediated ubiquitination of ubH2A and ubH2B. These events culminated in creating obstacles during the H2A and H2B removal and chromatin condensation, thereby suppressing the differentiation of round spermatids and chromatin remodeling, which compromised the sperm quality and quantity.
Show more [+] Less [-]Enrichment of imidacloprid and its metabolites in lizards and its toxic effects on gonads
2020
Yang, Lu | Shen, Qiuxuan | Zeng, Tao | Li, Jianzhong | Li, Wei | Wang, Yinghuan
Soil contaminants can cause direct harm to lizards due to their regular swallowing of soil particles. As the world’s fastest growing insecticide with long half-life in soil, the endocrine disrupting effect of neonicotinoids on lizards deserves more attention. In this report, we assessed the endocrine disrupting effect of imidacloprid on Eremias argus during 28 days of continuous exposure. Among the imidacloprid and its metabolites, only the metabolite 6-chloropyridic acid had a significant accumulation in the gonads and was positively correlated with its blood concentration. Imidacloprid might cause endocrine disrupting effects on lizards in two ways. First, the desnitro metabolites of imidacloprid could accumulate in the brain, inhibited the secretion of gonadotropin-releasing hormone, and ultimately affected the feedback regulation of hypothalamic-pituitary-gonadal related hormones. Secondly, imidacloprid severely inhibited the gene expression of the corresponding enzymes in the gonadal anti-oxidative stress system, causing histological damage to the gonads and ultimately affecting gonadal function. Specifically, exposure to imidacloprid resulted in abnormal arrangement of spermatogenic epithelial epithelium, hyperplasia of epididymal wall, and oligospermia of male lizard. Meanwhile, gene expressions of cyp17, cyp19, and hsd17β were severely inhibited in the imidacloprid exposure group, consistent with decreased levels of testosterone and estradiol in plasma. Imidacloprid exposure could cause insufficient androgen secretion and less spermatogenesis in male lizards. The risk of imidacloprid exposure to female lizards was not as severe as that of male lizards, but it still inhibited the expression of cyp19 in the ovaries and led to a decrease in the synthesis of estradiol. This study firstly reported the endocrine disruption of imidacloprid to lizards, providing new data for limiting the use of neonicotinoids.
Show more [+] Less [-]Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice
2020
Zhan, Jing | Ma, Xiaoran | Liu, Donghui | Liang, Yiran | Li, Peize | Cui, Jingna | Zhou, Zhiqiang | Wang, Peng
Tributyltin (TBT), an organotin compound once widely used in agriculture and industry, has been reported to induce obesity and endocrine disruption. Gut microbiota has a strong connection with the host’s physiology. Nevertheless, the influences of TBT exposure on gut microbiota and whether TBT-influenced gut microbiota is related to TBT-induced toxicity remain unclear. To fill these gaps, ICR (CD-1) mice were respectively exposed to TBT at NOEL (L-TBT) and tenfold NOEL (H-TBT) daily by gavage for 8 weeks in the current study. The results showed that TBT exposure significantly increased body weight as well as epididymal fat, and led to adipocyte hypertrophy, dyslipidemia and impaired glucose and insulin homeostasis in mice. Additionally, TBT exposure significantly decreased the levels of T4, T3 and testosterone in serum. Also of note, TBT exposure changed gut microbiota composition mainly by decreasing Bacteroidetes and increasing Firmicutes proportions. To confirm the role of gut microbiota in TBT-induced overweight and hormonal disorders, fecal microbiota transplantation was performed and the mice receiving gut microbiota from H-TBT mice had similar phenotypes with their donor mice including significant body weight and epididymal fat gain, glucose and insulin dysbiosis and hormonal disorders. These results suggested that gut microbiome altered by TBT exposure was involved in the TBT-induced increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice, providing significant evidence and a novel perspective for better understanding the mechanism by which TBT induces toxicity.
Show more [+] Less [-]Eugenol mitigated acute lung but not spermatic toxicity of C60 fullerene emulsion in mice
2021
Pinheiro, Felipe Gomes | Moreira-Gomes, Maria Diana | Machado, Mariana Nascimento | Almeida, Tailane dos Santos | Barboza, Priscila da Penha Apolinário | Silva Oliveira, Luis Felipe | Ávila Cavalcante, Francisco Sales | Leal-Cardoso, José Henrique | Fortunato, Rodrigo Soares | Zin, Walter Araujo
C₆₀ fullerene (C₆₀) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C₆₀ emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C₆₀ emulsion toxicity. The first group of mice (protocol 1) received intratracheally C₆₀ emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C₆₀ emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C₆₀ emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.
Show more [+] Less [-]n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Show more [+] Less [-]Spermatogenesis disorder caused by T-2 toxin is associated with germ cell apoptosis mediated by oxidative stress
2019
Yang, Xu | Zhang, Xuliang | Zhang, Jian | Ji, Qiang | Huang, Wanyue | Zhang, Xueyan | Li, Yanfei
T-2 toxin is an unavoidable contaminant in human food, animal feeds, and agricultural products. T-2 toxin has been found to impair male reproductive function. But, few data is available that reveals the reproductive toxicity mechanism. In the study, male Kunming mice were orally administrated with T-2 toxin at the doses of 0, 0.5, 1 or 2 mg/kg body weight for 28 days. The body and reproductive organs weight, the concentration, malformation rate and ultrastructure of sperm in cauda epididymis were detected. Oxidative stress biomarkers and apoptosis were also measured in testes. Histological change of testes was performed by H&E and TUNEL staining. T-2 toxin down-regulated body and reproductive organs (testis, epididymis and seminal vesicle) weight, sperm concentration, increased sperm malformation rate and damaged the ultrastructure of sperm and structure of testes. T-2 toxin treatment increased the reactive oxygen species (ROS) and malondialdehyde content, while, decreased the total anti-oxidation capacity (T-AOC) and the superoxide dismutase activity in testes. T-2 toxin exposure increased the TUNEL-positive germ cells, the activities and mRNA expressions of caspase-3, caspase-8 and caspase-9, the mRNA expression of Bax, and inhibited the Bcl-2 mRNA expression. Furthermore, the expressions of caspase-3, caspase-8 caspase-9 and Bax were positively correlated with ROS level, but negatively correlated with T-AOC in testis. In summary, T-2 toxin caused spermatogenesis disorder associated with the germ cell apoptosis medicated by oxidative stress, impairing the male reproductive function.
Show more [+] Less [-]Selenium abates reproductive dysfunction via attenuation of biometal accumulation, oxido-inflammatory stress and caspase-3 activation in male rats exposed to arsenic
2019
Adedara, Isaac A. | Adebowale, Adetutu A. | Atanda, Oluwadarasimi E. | Fabunmi, Adekola T. | Ayenitaju, Afolashade C. | Rocha, Joao B.T. | Farombi, Ebenezer O.
Frequent exposure to arsenic is well documented to impair reproductive function in humans and animals. Biological significance of inorganic selenium and organoselenium, diphenyl diselenide (DPDS), has been attributed to their pharmacological activities. However, their roles in arsenic-mediated reproductive toxicity is lacking in literature. The present study evaluated the protective effects elicited by selenium and DPDS in arsenic-induced reproductive deficits in rats. Animals were either exposed to arsenic alone in drinking water at 60 μg AsO₂Na L⁻¹ or co-treated with selenium at 0.25 mg kg⁻¹ or DPDS at 2.5 mg kg⁻¹ body weight for 45 consecutive days. Results indicated that arsenic-mediated deficits in spermatogenic indices and marker enzymes of testicular function were significantly abrogated in rats co-treated with selenium or DPDS. Additionally, selenium or DPDS co-treatment prevented arsenic-mediated elevation in oxidative stress indices and significantly suppressed arsenic-mediated inflammation evidenced by diminished myeloperoxidase activity, nitric oxide, tumor necrosis factor alpha and interleukin-1 beta levels in hypothalamus, testes and epididymis of the rats. Moreover, selenium or DPDS abrogated arsenic mediated activation of caspase-3 activity and histological lesions in the treated rats. Taken together, selenium or DPDS improved reproductive function in arsenic-exposed rats via suppression of inflammation, oxidative stress and caspase-3 activation in rats.
Show more [+] Less [-]Perinatal exposure to low-dose decabromodiphenyl ethane increased the risk of obesity in male mice offspring
2018
Yan, Sen | Wang, Dezhen | Teng, Miaomiao | Meng, Zhiyuan | Yan, Jin | Li, Ruisheng | Jia, Ming | Yao, Chenyang | Sheng, Jing | Tian, Sinuo | Zhang, Renke | Zhou, Zhiqiang | Zhu, Wentao
Decabromodiphenyl Ethane (DBDPE), a kind of new brominated flame retardants (NBFRs) used to replace DecaBDE, has been frequently detected in the environment and human samples. In this study, we explored its toxic effects on male mouse offspring after perinatal exposure to DBDPE. During the perinatal period, pregnant ICR mice were exposed to DBDPE (100 μg/kg body weight) via oral gavage. After weaning, male offspring were fed on a low-fat diet and a high-fat diet, respectively. We measured and recorded body weight, liver weight, and epididymis fat mass, blood biochemical markers, metabolites changes in liver, and gene expression involved in lipid and glucose homeostasis. The results showed that perinatal exposure to DBDPE increased the risk of obesity in mouse offspring and affected triglyceride synthesis, bile secretion, purine synthesis, mitochondrial function and glucose metabolism, furthermore, the use of HFD feeding may further exacerbate these effects. All of these results show that early-life exposure to low doses of DBDPE can promote the development of metabolic dysfunction, which in turn induces obesity.
Show more [+] Less [-]