Refine search
Results 1-10 of 65
Trophic transfer of methylmercury and brominated flame retardants in adjacent riparian and aquatic food webs: 13C indicates biotransport of contaminants through food webs
2022
Wu, Xiaodan | Chen, Laiguo | Li, Xiaoyun | Cao, Xingpei | Zheng, Xiaobo | Li, Ronghua | Zhang, Jia'en | Luo, Xiaojun | Mai, Bixian
Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ¹³C (p < 0.01) rather than δ¹⁵N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ¹⁵N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ¹³C can be a promising ecological indicator for biotransport of pollutants across ecosystems.
Show more [+] Less [-]Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea
2021
Wu, Ying-Cui | Li, Jian-Long | Wang, Jian | Zhuang, Guang-Chao | Liu, Xi-Ting | Zhang, Hong-Hai | Yang, Gui-Peng
The spatial distributions, fluxes, and environmental effects of non-methane hydrocarbons (NMHCs) were investigated in the Yellow Sea (YS) and the East China Sea (ECS) in spring. The average concentrations of ethane, propane, i-/n-butane, ethylene, propylene and isoprene in the seawater were 18.1 ± 6.4, 15.4 ± 4.7, 6.8 ± 2.9, 6.4 ± 3.2, 67.1 ± 26.7, 20.5 ± 8.7 and 17.1 ± 11.1 pmol L⁻¹, respectively. The alkenes in the surface seawater were more abundant than their saturated homologs and NMHCs concentrations (with the exception of isoprene) decreased with carbon number. The spatial variations of isoprene were consistent with the distributions of chlorophyll a (Chl-a) and Chaetoceros, Skeletonema, Nitzschia mainly contributed to the production of isoprene, while the others’ distributions might be related to their photochemical production. Observations in atmospheric NMHCs indicated alkanes in the marine atmosphere decreased from inshore to offshore due to influence of the continental emissions, while alkenes were largely derived from the oceanic source. In addition, no apparent diurnal discrepancy of atmospheric NMHCs (except for isoprene) were found between daytime and night. As the main sink of NMHCs in seawater, the average sea-to-air fluxes of ethane, propane, i-/n-butane, ethylene and propylene were 31.70, 29.75, 18.49, 15.89, 239.6, 67.94 and 52.41 nmol m⁻² d⁻¹, respectively. The average annual emissions of isoprene accounted for 0.1–1.3% of the global ocean emissions, which indicated that the coastal and shelf areas might be significant sources of isoprene. Furthermore, this study represents the first effort to estimate the environmental effects caused by NMHCs over the YS and the ECS and the results demonstrated contributions of alkanes to ozone and secondary organic aerosol (SOA) formation were lower than those of the alkenes and the largest contributor was isoprene.
Show more [+] Less [-]Establishment and verification of anthropogenic volatile organic compound emission inventory in a typical coal resource-based city
2021
Niu, Yueyuan | Yan, Yulong | Li, Jing | Liu, Peng | Liu, Zhuocheng | Hu, Dongmei | Peng, Lin | Wu, Jing
A few studies on volatile organic compound (VOC) emission inventories in coal resource-based cities have been reported, and previous emission inventories lacked verification. Herein, using Yangquan as a case study, emission factor (EF) method and “(tracer ratio) TR - positive matrix factorization (PMF)” combined method based on atmospheric data were used to establish and verify the VOC emission inventory in coal resource-based cities, respectively. The total VOC emissions in Yangquan were 9283.2 t [-40.0%, 62.1%] in 2018, with industrial processes being the major contributors. Alkanes (35.8%), aromatics (25.0%), and alkenes (19.8%) were the main compounds in the emission inventory. The verification results for both species emission and source structure were in agreement, indicating the accuracy of VOC emission inventory based on EF method to a certain extent. However, for some species (ethane, propane, benzene, and acetylene), the EF method indicated emissions lower than those obtained from the TR results. Furthermore, the summer-time emission contribution from fossil fuel combustion indicated by the EF method (23.4%) was lower than that obtained from the PMF results (38.4%). Overall, these discrepancies could be attributed to the absence of a coal gangue source in the EF method. The verification results determined the accuracy of the VOC emission inventory and identified existing problems in the estimation of the VOC emission inventory in coal resource-based cities. In particular, not accounting for the coal gangue emissions may result in an underestimation of VOC emissions in coal resource-based cities. Thus, coal gangue emissions should be considered in future research.
Show more [+] Less [-]Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China
2020
Hu, Yongxia | Sun, Yuxin | Pei, Nancai | Zhang, Zaiwang | Li, Huawei | Wang, Weiwei | Xie, Jinli | Xu, Xiangrong | Luo, Xiaojun | Mai, Bixian
Halogenated flame retardants (HFRs) are ubiquitous in the environment, but little information is available about the bioaccumulation of HFRs in mangrove plants. In this study, three mangrove plant species were collected from Futian National Nature Reserve of Shenzhen City, South China to investigate the bioaccumulation of polybrominated diphenyl ethers (PBDEs) and several alternative halogenated flame retardants (AHFRs), including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), tetrabromop-xylene (pTBX), pentabromoethylbenzene (PBEB) and dechlorane plus (DP). The mean concentrations of PBDEs, DBDPE, BTBPE, pTBX, PBT, PBEB, HBB and DP in mangrove plant species were 2010, 1870, 36.2, 18.7, 40.1, 17.8, 9.68 and 120 pg g⁻¹ dry weight, respectively. PBDEs were the dominant HFRs in mangrove plant tissues, followed by DBDPE. The relative abundance of BDE 209 in three mangrove plant tissues were much lower than those in sediments. Significant negative relationships between log root bioaccumulation factors and log Kₒw, and between log TFᵣ₋ₛ (from root to stem) and log Kₒw were observed, indicating that HFRs with low hydrophobicity were easily absorbed by mangrove roots and stems. A positive correlation between log TFₛ₋ₗ (from stem to leaf) and log Kₒw were found, suggesting that air-leaf exchange may occur in mangrove plants. This study highlights the uptake of HFRs by mangrove plants, which can be used as remediation for HFRs contamination in the environment.
Show more [+] Less [-]Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations
2019
Chutia, Lakhima | Ojha, Narendra | Girach, Imran A. | Sahu, Lokesh K. | Alvarado, Leonardo M.A. | Burrows, J. P. (John P.) | Pathak, Binita | Bhuyan, Pradip Kumar
We investigate the distribution of volatile organic compounds (VOCs) over Indian subcontinent during a winter month of January 2011 combining the regional model WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) with ground- and space-based observations and chemical reanalysis. WRF-Chem simulated VOCs are found to be comparable with ground-based observations over contrasting environments of the Indian subcontinent. WRF-Chem results reveal the elevated levels of VOCs (e. g. propane) over the Indo-Gangetic Plain (16 ppbv), followed by the Northeast region (9.1 ppbv) in comparison with other parts of the Indian subcontinent (1.3–8.2 ppbv). Higher relative abundances of propane (27–31%) and ethane (13–17%) are simulated across the Indian subcontinent. WRF-Chem simulated formaldehyde and glyoxal show the western coast, Eastern India and the Indo-Gangetic Plain as the regional hotspots, in a qualitative agreement with the MACC (Monitoring Atmospheric Composition and Climate) reanalysis and satellite-based observations. Lower values of RGF (ratio of glyoxal to formaldehyde <0.04) suggest dominant influences of the anthropogenic emissions on the distribution of VOCs over Indian subcontinent, except the northeastern region where higher RGF (∼0.06) indicates the role of biogenic emissions, in addition to anthropogenic emissions. Analysis of HCHO/NO₂ ratio shows a NOₓ-limited ozone production over India, with a NOₓ-to-VOC transition regime over central India and IGP. The study highlights a need to initiate in situ observations of VOCs over regional hotspots (Northeast, Central India, and the western coast) based on WRF-Chem results, where different satellite-based observations differ significantly.
Show more [+] Less [-]Stocks, flows and emissions of DBDPE in China and its international distribution through products and waste
2019
Shen, Kaihui | Li, Li | Liu, Junzhou | Chen, Chengkang | Liu, Jianguo
Decabromodiphenyl ethane (DBDPE) is an alternative to the commercial decabromodiphenyl ether (deca-BDE) mixture but has potentially similar persistence, bioaccumulation potential and toxicity. While it is widely used as a flame retardant in electrical and electronic equipment (EEE) in China, DBDPE could be distributed globally on a large scale with the international trade of EEE emanating from China. Here, we performed a dynamic substance flow analysis to estimate the time-dependent mass flows, stocks and emissions of DBDPE in China, and the global spread of DBDPE originating in China through the international trade of EEE and e-waste. Our analysis indicates that, between 2006 and 2016, ∼230 thousand tonnes (kt) of DBDPE were produced in China; production, use and disposal activities led to the release of 196 tonnes of DBDPE to the environment. By the end of 2016, ∼152 kt of the DBDPE produced resided in in-use products across China. During the period 2000–2016, ∼39 kt of DBDPE were exported from China in EEE products, most of which (>50%) ended up in North America. Based on projected trends of China's DBDPE production, use and EEE exports, we predict that, by 2026, ∼74 and ∼14 kt of DBDPE originating in China will reside in in-use and waste stocks, respectively, in regions other than mainland China, which will act as long-term emission sources of DBDPE worldwide. This study discusses the considerable impact of DBDPE originating in China and distributed globally through the international trade of EEE; this is projected to occur on a large scale in the near future, which necessitates countermeasures.
Show more [+] Less [-]Halogenated organic pollutants in aquatic, amphibious, and terrestrial organisms from an e-waste site: Habitat-dependent accumulation and maternal transfer in watersnake
2018
Liu, Yu | Luo, Xiao-Jun | Huang, Li-Qian | Tao, Lin | Zeng, Yan-Hong | Mai, Bi-Xian
Dichlorodiphenyltrichloroethanes (DDTs), Polychlorinated biphenyls (PCBs), and halogenated flame retardants (HFRs) were measured in aquatic, amphibious, and terrestrial wildlife collected from an e-waste contaminated pond and its surrounding region. The species-specific bioaccumulation and maternal transfer of chemicals in the watersnake were investigated. Total concentrations of target chemicals ranged from 1.3 × 103 to 4.8 × 105 ng g−1 lipid weight. PCBs were the predominant (72–95%) contaminants, followed by polybrominated biphenyl ethers (PBDEs, 4–27%). The concentrations of PCBs and HFRs except decabromodiphenyl ethane (DBDPE) were higher in aquatic organisms and terrestrial birds than in amphibians and lizards. Relatively high DDT levels were observed in the terrestrial birds and toads, but high DBDPE was found in the aquatic species except for waterbird eggs. Species-specific congeners profiles for PCB and PBDE and isomeric composition for dechlorane plus were observed. These results indicated a habitat-dependent accumulation among different species. Maternal transfer examined by the ratio of egg to carcass for watersnakes indicated multi-linear correlations between maternal transfer potential and octanol-water partition coefficient (log KOW) of chemicals. The same maternal transfer efficiencies were found for chemicals with log KOW between 6 and 8, then the maternal transfer potential rapidly decreased with increasing of log KOW.
Show more [+] Less [-]Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China
2018
Huang, Huanfang | Zhang, Yuan | Chen, Wei | Chen, Wenwen | Yuen, Dave A. | Ding, Yang | Chen, Yingjie | Mao, Yao | Qi, Shihua
Dicofol (2,2,2-trichloro-1,1-bis-(p-chlorophenyl)ethanol) found in the environment is not only a miticide originated from commercial use, but also a metabolite of dichlorodiphenyltrichloroethane (DDT), which is often overlooked. To verify the sources and transformation pathways of DDT and related metabolites in soils, we measured p,p’-(dicofol + DBP) (sum of p,p’-dicofol and 4,4′-dichlorobenzophenone), DDT and six metabolites in soils from Northwest Fujian, China. The ratios of 1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane (o,p’-DDT)/1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (p,p’-DDT) and the mass balance demonstrated that p,p’-(dicofol + DBP) predominantly originated from p,p’-DDT transformation rather than from actual dicofol application. p,p’-(dicofol + DBP) accounted for 45.0% as the primary metabolites of DDT in this study, more than 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (p,p’-DDE) and 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (p,p’-DDD), which might lead to large overestimations of the fresh DDT input by using the traditional ratio of (∑₂DDD + ∑₂DDE)/∑₂DDT (with all o,p’- and p,p’- isomers included). In paddy fields where the conditions alternate between aerobic (dry period) and anaerobic (wet period), both p,p’-DDD and p,p’-DDE were likely to degrade to 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (p,p’-DDMU), which further transformed to 2,2-bis(p-chlorophenyl)ethylene (p,p’-DDNU). Degradation of p,p’-DDMU to p,p’-DDNU mainly occurred in waterlogged paddy soils. However, p,p’-DDNU might not transform to other higher-order metabolites in aerobic surface soils. Overall, our study confirmed p,p’-(dicofol + DBP) as metabolites of p,p’-DDT, suggested DDE and DDD were parallel precursors of DDMU, and further verified the transformation pathways of DDT in surface soils.
Show more [+] Less [-]Perinatal exposure to low-dose decabromodiphenyl ethane increased the risk of obesity in male mice offspring
2018
Yan, Sen | Wang, Dezhen | Teng, Miaomiao | Meng, Zhiyuan | Yan, Jin | Li, Ruisheng | Jia, Ming | Yao, Chenyang | Sheng, Jing | Tian, Sinuo | Zhang, Renke | Zhou, Zhiqiang | Zhu, Wentao
Decabromodiphenyl Ethane (DBDPE), a kind of new brominated flame retardants (NBFRs) used to replace DecaBDE, has been frequently detected in the environment and human samples. In this study, we explored its toxic effects on male mouse offspring after perinatal exposure to DBDPE. During the perinatal period, pregnant ICR mice were exposed to DBDPE (100 μg/kg body weight) via oral gavage. After weaning, male offspring were fed on a low-fat diet and a high-fat diet, respectively. We measured and recorded body weight, liver weight, and epididymis fat mass, blood biochemical markers, metabolites changes in liver, and gene expression involved in lipid and glucose homeostasis. The results showed that perinatal exposure to DBDPE increased the risk of obesity in mouse offspring and affected triglyceride synthesis, bile secretion, purine synthesis, mitochondrial function and glucose metabolism, furthermore, the use of HFD feeding may further exacerbate these effects. All of these results show that early-life exposure to low doses of DBDPE can promote the development of metabolic dysfunction, which in turn induces obesity.
Show more [+] Less [-]Characterization of volatile organic compounds and the impacts on the regional ozone at an international airport
2018
Yang, Xiaowen | Cheng, Shuiyuan | Wang, Gang | Xu, Ran | Wang, Xiaoqi | Zhang, Hanyu | Chen, Guolei
In this study, the measurement of volatile organic compounds (VOCs) was conducted at Beijing Capital International Airport (ZBAA) and a background reference site in four seasons of 2015. Total concentrations of VOCs were 72.6 ± 9.7, 65.5 ± 8.7, 95.8 ± 11.0, and 79.2 ± 10.8 μg/m3 in winter, spring, summer, and autumn, respectively. The most abundant specie was toluene (10.1%–17.4%), followed by benzene, ethane, isopentane, ethane, acetylene, and n-butane. Seasonal variations of VOCs were analyzed, and it was found that the highest concentration occurring in summer, while the lowest in spring. For the diurnal variation, the concentration of VOCs in the daytime (9:00–15:00) was less than that at night (15:00–21:00) obviously. Ozone Formation Potential (OFP) was calculated by using Maximum Incremental Reactivity (MIR) method. The greatest contribution to OFP from alkenes and aromatics, which accounted for 27.3%–51.2% and 36.6%–58.6% of the total OFP. The WRF-CMAQ model was used to simulate the impact of airport emissions on the surrounding area. The results indicated that the maximum impact of VOCs emissions and all sources emissions at the airport on O3 was 0.035 and −23.8 μg/m3, respectively. Meanwhile, within 1 km from the airport, the concentration of O3 around the airport was greatly affected by airport emitted.
Show more [+] Less [-]