Refine search
Results 1-7 of 7
Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea
2016
Jiang, Tao | Chen, Feiyu | Yu, Zonghe | Lü, Lin | Wang, Zhaohui
In this study, we conducted a 14-month investigation in Daya Bay, southern China to understand the effects of oyster farming on phytoplankton community and biomass by using size-fractionated phytopigments. Results proved the filtering effects of oysters on phytoplankton biomass. During the oyster culture period, the average concentration of total chlorophyll a (sum of size-fractionated Chl a) within the farming area was approximately 60% lower than that at the reference site. Phytoplankton depletion in the aquaculture zone mainly occurred in micro-sized fractions (>20 μm) of Chl a, fucoxanthin, and peridinin. The influence of oyster filtration on nano-sized (2.7–20 μm) pigments seemed less than that on micro-sized ones. The depletion of peridinin and 19′-hex-fucoxanthin in aquaculture zone was higher than those of the other pigments, which indicated that flagellated cells might be selectively filtered by oysters and could be more easily influenced by oyster aquaculture. The pico-sized Chl a (<2.7 μm) comprised 24% of total Chl a on the average in the aquaculture zone during the cultural period compared to 6% in the reference site. Picoeukaryote abundance, which was determined via flow cytometry, was significantly higher in the aquaculture zone than in the non-aquaculture areas. The abundance of picoeukaryote is significantly and positively correlated with the concentrations of pico-sized prasinoxanthin, violaxanthin, and neoxanthin, indicating that picoeukaryote is dominated by those in prasinophyte. The results suggest that oyster aquaculture might stimulate the growth of prasinophyte, although the seasonal variations are mainly controlled by the water temperature in the study area. This research highlights the successful use of size-fractionated phytopigments to estimate size-specific phytoplankton biomass and community, which can be applied as a routine method to monitor the environmental effect and food resources of bivalve aquaculture.
Show more [+] Less [-]Merchant ships discharging unwanted marine species in close proximity of a French aquaculture area: Risks involved
2013
Masson, Daniel | Thomas, Gerard | Genauzeau, Sylvie | Le Moine, Olivier | Derrien, Annick
The most important oyster farming area in Europe is in a close proximity of two medium size merchant ports. Cargo ships deballast in this area before loading, releasing unwanted or noxious marine species. During a sampling campaign aboard these arriving ships, we found in some ballast water samples a huge number of potentially toxic dinoflagellates and some potentially pathogenic bacteria. A model was applied to find the potential geographical spread of the discharged ballast water. This model predicts the water to reach highly vulnerable shellfish farmed areas in six to eight days.
Show more [+] Less [-]Are non-indigenous species hitchhiking offshore farmed mussels? A biogeographic and functional approach
2021
Piló, D. | Pereira, F. | Carvalho, A.N. | Vasconcelos, P. | Cunha, A.M. | Gaspar, M.B.
The epifauna associated to farmed mussels in southern Portugal coast was analysed, aiming at identifying the species with spreading potential through commercial transport. The presence of a relevant number of the species here found is not reported to at least one of the common mussel export/transposition countries. Indeed, important species biogeographic dissimilarities between the mussel farm area and the Greater North Sea and Western Mediterranean Sea sub-regions were detected, suggesting the potential transport of non-indigenous species (NIS) into other countries. Among them, fouling species such as the anemones Paractinia striata and Urticina felina, the acorn barnacles Balanus glandula and Balanus trigonus or the bryozoans Bugulina stolonifera and Schizoporella errata exhibit functional attributes that allow them to colonise and spread in new areas. This combined biogeographic and functional approach may contribute to clarify the role of aquaculture on the transport of NIS and to predict and prevent their spreading worldwide.
Show more [+] Less [-]Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China
2018
Wang, Teng | Zou, Xinqing | Li, Baojie | Yao, Yulong | Li, Jiasheng | Hui, Hejiu | Yu, Wenwen | Wang, Chenglong
Despite the rapid construction of offshore wind farms, the available information regarding the risks of this type of development in terms of emerging pollutants, particularly microplastics, is scarce. In this study, we quantified the level of microplastic pollution at an offshore wind farm in the Yellow Sea, China, in 2016. The abundance of microplastics was 0.330 ± 0.278 items/m3 in the surface water and 2.58 ± 1.14 items/g (dry) in the sediment. To the best of our knowledge, the level of microplastic pollution in our study area was slightly higher than that in coastal areas around the world. The microplastics detected in the surface waters and sediments were mainly fibrous (75.3% and 68.7%, respectively) and consisted of some granules and films. The microplastics in the samples might originate from garments or ropes via wastewater discharge. The abundance of plastic in the water and sediment samples collected from the wind farm area was lower than that in the samples collected from outside the wind farm area. The anthropogenic hydrodynamic effect was the main factor affecting the local distribution of microplastics. The presence of a wind farm could increase the bed shear stress during ebb tide, disturbing the bed sediment, facilitating its initiation and transport, and ultimately increasing the ease of washing away the microplastics adhered to the sediment. This study will serve as a reference for further studies of the distribution and migration of microplastics in coastal zones subjected to similar marine utilization.
Show more [+] Less [-]The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation [Erratum: June 2021, v.28(23), p.30422]
2021
Piwowar, Arkadiusz
The aim of the conducted study was to characterize the attitudes and practices of Polish farmers in the area of performing chemical plant protection treatments. A particular attention was paid to identifying the relationship between the direction of changes in the volume of chemical plant protection product consumption and selected attributes of farms. The main time range of the analyses covered the period of 2013–2017. Statistical data and results of representative surveys carried out on a sample of 1101 farms in Poland were used in the research process. Due to the large number of variants of the analysed variables, a multiple correspondence analysis was used, which made it possible to determine the correlation between the examined features (direction of changes in pesticide use relative to the farm area, economic size of the farm and location of the farm). Statistical analysis showed the existence of strong relationships between the physical (1) and economic (2) size of farms and the direction of changes in pesticide consumption ((1) φ² = 0.0907; (2) φ² = 0.1141)). According to empirical studies, the reduction of pesticide consumption took place mainly on the smallest farms. The implementation of the integrated plant protection directive has not resulted in significant changes in the form of reduced pesticide use in large-scale field crops. This raises the need to modify the strategy and model of crop protection in large-scale field crops in Poland.
Show more [+] Less [-]Identification of Point Sources of Metal Pollution in the Berg River, Western Cape, South Africa
2013
Jackson, V. A. | Paulse, A. N. | Odendaal, J. P. | Khan, W.
The aim of this study was to statistically compare sampling sites identified along the Berg River system to identify the major point sources of metal pollution from June 2004 to May 2005. Three sites were selected [site A—agricultural farming area, site B—Plot 8000 (close to the informal settlement), and site C—the Newton pumping station] representing different sectors which the river services. Aluminium (Al), iron (Fe), manganese (Mn), and lead (Pb) concentrations were determined using Inductively Coupled Plasma Atomic Emission Spectrometry and were statistically compared and analysed with one-way ANOVAs. For all the metals analysed, site C (industrial area) proved to be the site where the highest average metal concentrations were recorded. Generally, the concentrations recorded at site A (site furthest from the industrial area) were significantly (p < 0.05) lower than the concentrations recorded at both sites B and C. While the Al and Fe concentrations were consistently higher than any of the other metals analysed for, site C was identified as the primary source of metal contamination in the Berg River, resulting from the runoff from industrial activities at this particular site.
Show more [+] Less [-]Multi-scale land use modelling with the CLUE modelling framework
2000
Koning, G.H.J. de