Refine search
Results 1-9 of 9
Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India
2016
Kang, Mingjie | Fu, Pingqing | Aggarwal, Shankar G. | Sudhanshu Kumar, | Zhao, Ye | Sun, Yele | Wang, Zifa
Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7–1.1 μm and 4.7–5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8–68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.
Show more [+] Less [-]Rapid determination of three textile surfactants in environmental samples by modeling excitation-emission second-order data with multi-way calibration methods
2022
Martínez, Ramón A. | Fechner, Diana C. | Delfino, Mario R. | Pellerano, Roberto G. | Goicoechea, Héctor C.
The textile industry is an important potential source of environmental pollution due to the use of chemical products. Dyes, hydrolyzed dyes, and surfactants, among others, are chemical compounds present in wastewater of textile plant. Moreover, the anionic surfactants have toxic effects for various aquatic organisms even in low concentrations. The methodologies investigated to quantify surfactants, in general, consume a lot of analysis time and frequently use toxic or environmentally objectionable reagents. For these reasons, the objective of this work was to develop a quick and simple method to quantify surfactants without the use of expensive reagents and equipment, avoiding extraction and preconcentration stages. The proposed method is based on fluorescent spectroscopy measurements for the acquisition of second-order data in excitation-emission matrices and multivariate calibration techniques applied to the data. The unfolded partial least squares combined to residual bilinearization (U-PLS/RBL) algorithm was better than parallel factor analysis (PARAFAC). U-PLS/RBL accurately quantified alkylnonylphenolethoxylated (APEO), dodecylbenzenesulfonic acid (ADBS), and 2-phenoxy-ethoxylated fatty alcohol (AGFE) surfactants. The chemometric model obtained good analytical figures of merit: REP% between 5 and 13 and LOQ between 0.45 and 2.77 μg mL⁻¹. This methodology had no significant difference compared with results obtained by a HPLC-FD reference technique, in addition with a considerable reduction in analysis time, reagent consumption, and therefore lower cost. For environmental applications, APEO, ADBS, and AGFE were quantify in textile wastewater treatment and in the receiving water body. The concentrations varied from 8.73 to 73.94 μg mL⁻¹ in the textile wastewater and were not detected in the receiving water body.
Show more [+] Less [-]Uptake and degradation of trimethylamine by Euphorbia milii
2016
Siswanto, Dian | Chhon, Yanvary | Thiravetyan, Paitip
Trimethylamine (TMA) is a volatile organic compound which causes not only unpleasant odor but also health concerns to humans. The average emission of TMA from food and fishery industries is 20.60 parts per billion (ppb) and emission from the gas exhausters is even higher which reaches 370 parts per million (ppm). In order to select the best plant TMA removal agent, in this study, 13 plants were exposed to 100 ppm of TMA and the remaining TMA concentration in their system was analyzed by gas chromatography (GC). Furthermore, plant metabolites from the selected plant were identified by gas chromatography-mass spectrometry (GC-MS). The result showed that Euphorbia milii was the most superior plant for TMA removal and could absorb up to 90 % of TMA within 12 h. E. milii absorbed TMA via leaf and stem with 55 and 45 % uptake efficiency, respectively. Based on its stomatal movement during the exposure to TMA, it was implied that the plant switched the photosynthetic mode from crassulacean acid metabolism (CAM)-cycling to CAM and CAM-idling. The switching of photosynthetic mode might reduce the stomata role in TMA absorption. Fatty acids, alkanes, and fatty alcohols in the plant leaf wax were also found to contribute to TMA adsorption. Leaf wax, stomata, and other leaf constituents contributed 58, 6, and 36 %, respectively, of the total TMA absorption by the leaf. The analysis and identification of plant metabolites confirmed that TMA was degraded and mineralized by E. milii.
Show more [+] Less [-]Herding Oil Slicks with Fatty Alcohol and Carbonaceous Particles
2022
Earnden, Laura | Foster, Sierra Eckel | Tchoukov, Plamen | Stoyanov, Stanislav R. | Pensini, Erica
Oil slicks occurring during petroleum transportation or production are major sources of surface water pollution, and spread over large areas. Herders are interfacially active species that reduce the spread of oil slicks on water surfaces, facilitating slick recovery. Here, octanol (a readily biodegradable fatty alcohol) is used as a herder to facilitate the recovery of diluted bitumen and conventional crude oil spilled onto the surface of fresh and synthetic marine water. While octanol promptly decreases the area of simulated oil slicks in Petri dishes, over time it partitions into the oil phase and lowers its interfacial tension. As a result, low-viscosity hydrocarbons (toluene and conventional crude oil) re-spread. This study uses charcoal to suppress re-spreading and facilitate the mechanical recovery of oil slicks. Charcoal partitions into the crude oil phase and does not stabilize crude oil in water emulsions upon mixing, as demonstrated using optical microscopy. This ensures that charcoal particles are not lost to the water phase and do not promote hydrocarbon dispersion. Charcoal prevents herded slicks from re-expanding by rigidifying the crude oil–water interface (demonstrated using a Langmuir trough) and potentially due to the affinity of crude oil for charcoal. Therefore, charcoal facilitates the physical removal of crude oil slicks after herding, as qualitatively assessed by retrieving them from Petri dishes with the aid of a spatula. While charcoal also facilitates the recovery of herded low-viscosity conventional crude oil, it has only a marginal effect on the recovery of herded bitumen, which has high viscosity.
Show more [+] Less [-]Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent
2010
Rocha-Santos, Teresa | Ferreira, Filipe | Silva, Lurdes | Freitas, Ana Cristina | Pereira, Ruth | Diniz, Mario | Castro, Luísa | Peres, Isabel | Duarte, Armando Costa
Background, aim and scope Pulp and paper mills generate a plethora of pollutants depending upon the type of pulping process. Efforts to mitigate the environmental impact of such effluents have been made by developing more effective biological treatment systems in terms of biochemical oxygen demand, chemical oxygen demand, colour and lignin content. This study is the first that reports an evaluation of the effects of a tertiary treatment by fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium and Rhizopus oryzae) on individual organic compounds of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (final effluent). Material and methods The tertiary treatment with P. sajor caju, T. versicolor and P. chrysosporium and R. oryzae was performed in batch reactors, which were inoculated with separate fungi species and monitored throughout the incubation period. Samples from effluent after secondary and after tertiary treatment with fungi were analysed for both absorbance and organic compounds. The samples were extracted for organic compounds using solid-phase extraction (SPE) and analysed by gas chromatography-mass spectrometry (GC/MS). The efficiencies of the SPE procedure was evaluated by recovery tests. Results A total of 38 compounds (carboxylic acids, fatty alcohols, phenolic compounds and sterols) were identified and quantified in the E. globulus bleached kraft pulp mill final effluent after secondary treatment. Recoveries from the extraction procedure were between 98.2% and 99.9%. The four fungi species showed an adequate capacity to remove organic compounds and colour. Tertiary treatment with R. oryzae was able to remove 99% of organic compounds and to reduce absorbance on 47% (270 nm) and 74% (465 nm). P. sajor caju, T. versicolor and P. chrysosporium were able to remove 97%, 92% and 99% of organic compounds, respectively, and reduce 18% (270 nm) to 77% (465 nm), 39% (270 nm) to 58% (465 nm) and 31% (270 nm) to 10% (465 nm) of absorbance, respectively. Discussion The wide variety of organic compounds found in the final effluent must be due to the degradation of E. globulus wood in pulp and paper mill. The concentrations of organic compounds in the final effluent of E. globulus bleached kraft pulp mill were in residual levels maybe due to the secondary treatment. The recovery tests showed the effectiveness of the extraction procedure, and no losses of analyte were suspected in the analytical determinations. Lignin derivatives such as vanilic acid, syringic acid, guaiacol, syringol and phloroglucinol were totally removed by R. oryzae, but the 47% absorbance reduction obtained at 270 nm suggests that these species were not able to complete degradation of lignin macromolecular compounds. Conclusions The organic compounds (carboxylic acids, fatty alcohols, phenolic compounds and sterols) were removed more efficiently by tertiary treatment with R. oryzae or P. chrysosporium, followed by P. sajor caju and T. versicolor. Regarding the removal of both colour and organic compounds, the tertiary treatment with R. oryzae was the most efficient. Recommendations and perspectives In order to reduce the deleterious impacts of paper mill effluents, efforts have been made to develop more effective advanced tertiary treatments. This study may serve as a basis of characterisation, in terms of organic compounds of E. globulus bleached kraft pulp mill final effluent after secondary treatment and as an effort to understand the effects of tertiary treatments with fungi on low concentrations of organic compounds from biological secondary treatment.
Show more [+] Less [-]Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants
2017
Ríos, Francisco | Fernández-Arteaga, Alejandro | Lechuga, Manuela | Fernández-Serrano, Mercedes
This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.
Show more [+] Less [-]Distribution and sources of oxygenated non-hydrocarbons in topsoil of Beijing, China
2016
Zhang, Zhihuan | Wan, Tiantian | Peng, Xuyang | He, Guangxiu | Liu, Yu | Zeng, Li
The oxygenated non-hydrocarbon compounds are widely distributed in soil. To investigate the distribution and origin of these compounds in topsoil of Beijing, their contents and compositions were measured in topsoil from 62 sites in Beijing. The research results showed that oxygenated non-hydrocarbons were composed primarily of C₆∼C₂₈ n-fatty acids, C₁₂∼C₂₈ n-fatty alcohols, n-fatty acid methyl esters, phthalates, sterols, and dehydroabietic acid in the topsoil of Beijing. The contents and compositions of these compounds varied with the sampling site. The concentrations of n-fatty acids and phthalate esters were the highest at all sites, followed by sterols, n-fatty acid methyl esters, fatty alcohols, and dehydroabietic acid in order. The n-fatty acids had a main peak of C₁₆, followed by C₁₈. An odd or even carbon number predominance was not observed in the low-molecular-weight n-fatty acids, indicating a fossil fuel or organic matter source. However, some high-molecular-weight n-fatty acids with an even carbon predominance may derive from a biomass. The n-fatty alcohols showed a main peak of C₂₂ and were predominated by an even carbon number, suggesting plant, microbial, or other natural origins. Phthalates, including diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), and dimethylphthalate (DMP), were detected. The content of phthalate esters was higher in the samples collected from dense human activity areas. The concentrations of DBP, DEHP, and DIBP were relatively high, indicating an anthropogenic source. The sterols (predominantly β-sitosterol) originated from biological sources, especially plants. The n-fatty acid methyl esters and dehydroabietic acid in topsoil showed apparent even carbon predominance with the former mainly derived from microorganisms or plants and the latter from cork combustion products.
Show more [+] Less [-]Occurrence and temporal variations of TMDD in the river Rhine, Germany
2010
Guedez, Arlen A. | Frömmel, Stephan | Diehl, Peter | Püttmann, Wilhelm
Background, aim, and scope The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5 µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008. Materials and methods The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219. Results The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a. Discussion The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated. Conclusions TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves' of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine. Recommendations and perspectives Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.
Show more [+] Less [-]Bacterial strains isolated from river water having the ability to split alcohol ethoxylates by central fission
2016
Budnik, Irena | Zembrzuska, Joanna | Łukaszewski, Zenon
Alcohol ethoxylates (AE) are a major component of the surfactant stream discharged into surface water. The “central fission” of AE with the formation of poly(ethylene glycols) (PEG) is considered to be the dominant biodegradation pathway. However, information as to which bacterial strains are able to perform this reaction is very limited. The aim of this work was to establish whether such an ability is unique or common, and which bacterial strains are able to split AE used as a sole source of organic carbon. Four bacterial strains were isolated from river water and were identified on the basis of phylogenetic trees as Enterobacter strain Z2, Enterobacter strain Z3, Citrobacter freundii strain Z4, and Stenotrophomonas strain Z5. Sterilized river water and “artificial sewage” were used for augmentation of the isolated bacteria. The test was performed in bottles filled with a mineral salt medium spiked with surfactant C₁₂E₁₀ (10 mg L⁻¹) and an inoculating suspension of the investigated bacterial strain. Sequential extraction of the tested samples by ethyl acetate and chloroform was used for separation of PEG from the water matrix. LC–MS was used for PEG determination on the basis of single-ion chromatograms. All four selected and investigated bacterial strains exhibit the ability to split fatty alcohol ethoxylates with the production of PEG, which is evidence that this property is a common one rather than specific to certain bacterial strains. However, this ability increases in the sequence: Stenotrophomonas strain Z5 < Enterobacter strain Z2 < Enterobacter strain Z3 = Citrobacter freundii strain Z4. Graphical Abstract Biodegradation by central fission of alcohol ethoxylates by bacterial strains isolated from river water
Show more [+] Less [-]