Refine search
Results 1-2 of 2
Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality
2019
Montiel-Rozas, María del Mar | Hurtado-Navarro, María | Díez-Rojo, Miguel Ángel | Pascual, José A. (José Antonio) | Ros, Margarita
The control of agricultural pests is key to maintain economically viable crops. Increasing environmental awareness, however, is leading to more restrictive European policies regulating the use of certain pesticides due to their impact on human health and the soil system. Given this context, we evaluated the efficacy of three alternatives to the soil fumigant 1,3-dichloropropene (1,3-D), which is currently banned in Europe: two non-fumigant nematicides [oxamyl (OX) and fenamiphos (FEN)] and the soil fumigant dimethyl disulfide (DMDS). We analysed the efficiency of these pesticides against root-knot nematodes and soil fungal pathogens (determined by qPCR) as well as the soil biological quality after treatments application (estimated by enzyme activities). Among treatments, 1,3-D and DMDS significantly reduced nematode populations. FEN was more effective in sandy soil, while OX had no effect in any soil. OX and FEN had no effect on fungal pathogens, whereas DMDS reduced the abundance of Rhizoctonia solani and Fusarium solani at the root level in clay-loam soil. Soil quality decreased after treatment application but then recovered throughout the experiment, indicating the possible dissipation of the pesticides. Our findings support DMDS as a potential sustainable alternative for controlling root-knot nematodes and fungal pathogens due to its effectiveness in both studied soils, although its negative impact on soil biological quality in sandier soils must be taken into account.Main finding of the work. DMDS is a reliable alternative to 1,3-D for controlling agricultural pest but its inhibitory effect on soil enzyme activities varied according to the soil characteristics.
Show more [+] Less [-]Chemical and Biological Combined Treatments for the Removal of Pesticides from Wastewaters
2012
Liberatore, Lolita | Bressan, Mario | Belli, Claudia | Lustrato, Giuseppe | Ranalli, Giancarlo
The combination of chemical oxidation (Fenton reaction) and biological treatment processes is a promising technique aiming to reduce recalcitrant wastewater loads. Preliminary tests were carried out on two widely used toxic and non-biodegradable pesticides, namely, Dazomet and Fenamiphos. The chemical reaction was employed as a pre-treatment step for the conversion of the substrates into oxygenated intermediates that were easily removed by means of a final biological treatment. In the combined action, the mineralisation activity of a selected microbial consortium was used to degrade residual volatile and non-volatile organic compounds into CO₂ and biomass.
Show more [+] Less [-]