Refine search
Results 1-10 of 237
Second rotation decline in P. radiata plantations in South Australia has been corrected.
1990
Woods R.V.
Nutrient response to diagnostic fertilization of Norway spruce Picea abies (L.) Karst plantations in western Quebec, Canada.
1990
Janicki W. | Jones A.R.C.
Forest decline and soil nutritional problems in Pacific areas.
1990
Mueller Dombois D.
An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis Full text
2021
Wang, Yuntao | Guo, Guanghui | Zhang, Degang | Lei, Mei
Elevated concentrations of heavy metals in agricultural soils threatening ecological security and the quality of agricultural products, and apportion their sources accurately is still a challenging task. Multivariate statistical analysis, GIS mapping, Pb isotopic ratio analysis (IRA), and positive matrix factorization (PMF) were integrated to apportion the potential sources of heavy metal(loid)s of orchard soil in Karst-regions. Study region soils were moderately contaminated by Cd. Obvious enrichment and moderate contamination level of Cd were found in study region surface soils, followed by As, Zn, and Pb. Correlation analysis (CA) and principal component analysis (PCA) indicated Ba, Co, Cr, Ni, V were mainly from natural sources, while As, Cd, Cu, Pb, Zn were derived from two kinds of anthropogenic sources. Based on Pb isotope composition, atmospheric deposition and livestock manure were the main sources of soil Pb accumulation. Further source identification and quantification results with PMF model and GIS mapping revealed that soil parent materials (46.44%) accounted for largest contribution to the soil heavy metal(loid)s, followed by fertilizer application (31.37%) and mixed source (industrial activity and manure, 22.19%). Uncertainty analysis indicated that the three-factors solution of PMF model was an optimal explanation and the heavy metal(loid) with lower percentage contributions had higher uncertainty. This study results can help to illustrate the sources of heavy metals more accurately in orchard agricultural soils with a clear expected future for further applications.
Show more [+] Less [-]Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production Full text
2021
Shin, JoungDu | Park, DoGyun | Hong, SeungGil | Jeong, Changyoon | Kim, Hyunook | Chung, W. (Woojin)
Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha⁻¹ compared to 0.89 tonne ha⁻¹ in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH₄ emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N₂O emissions (0.002 kg ha⁻¹) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO₂-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha⁻¹ compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.
Show more [+] Less [-]Model-based analysis of phosphorus flows in the food chain at county level in China and options for reducing the losses towards green development Full text
2021
Zhou, Jichen | Jiao, Xiaoqiang | Ma, Lin | de Vries, Wim | Zhang, Fusuo | Shen, Jianbo
Insight in the phosphorus (P) flows and P balances in the food chain is largely unknown at county scale in China, being the most appropriate spatial unit for nutrient management advice. Here, we examined changes in P flows in the food chain in a typical agricultural county (Quzhou) during 1980–2017, using substance flow analyses. Our results show that external P inputs to the county by feed import and fertilizer were 7 times greater in 2017 than in 1980, resulting in a 7-fold increase in P losses to the environment in the last 3 decades, with the biggest source being animal production. Phosphorus use efficiency decreased from 51% to 30% in crop production (PUEc) and from 32% to 11% in the whole food chain (PUEf), but increased from 4% to 7% in animal production (PUEa). A strong reduction in P inputs and thus increase in PUE can be achieved by balanced P fertilization, which is appropriate for Quzhou considering a current average adequate soil P status. Fertilizer P use can be reduced from 7276 tons yr⁻¹ to 1765 tons yr⁻¹ to equal P removal by crops. This change would increase P use efficiency for crops from 30% to 86% but it has a negligible effect on P losses to landfills and water bodies. Increasing the recycling of manure P from the current 43%–95% would reduce fertilizer P use by 17% and reduce P losses by 47%. A combination of reduced fertilizer P use and increased recycling of manure P would save fertilizer P by 93%, reduce P accumulation by 100% and P loss by 49%. The results indicate that increasing manure-recycling and decreasing fertilizer-application are key to achieving sustainable P use in the food chain, which can be achieved through coupling crop-livestock systems and crop-based nutrient management.
Show more [+] Less [-]An empirical model to estimate ammonia emission from cropland fertilization in China Full text
2021
Wang, Chen | Cheng, Kun | Ren, Chenchen | Liu, Hongbin | Sun, Jianfei | Reis, Stefan | Yin, Shasha | Xu, Jianming | Gu, Baojing
Ammonia (NH₃) volatilization is one of the main pathways of nitrogen loss from cropland, resulting not only in economic losses, but also environmental and human health impacts. The magnitude and timing of NH₃ emissions from cropland fertilizer application highly depends on agricultural practices, climate and soil factors, which previous studies have typically only considered at coarse spatio-temporal resolution. In this paper, we describe a first highly detailed empirical regression model for ammonia (ERMA) emissions based on 1443 field observations across China. This model is applied at county level by integrating data with unprecedented high spatio-temporal resolution of agricultural practices and climate and soil factors. Results showed that total NH₃ emissions from cropland fertilizer application amount to 4.3 Tg NH₃ yr⁻¹ in 2017 with an overall NH₃ emission factor of 12%. Agricultural production for vegetables, maize and rice are the three largest emitters. Compared to previous studies, more emission hotspots were found in South China and temporally, emission peaks are estimated to occur three months earlier in the year, while the total amount of emissions is estimated to be close to that calculated by previous studies. A second emission peak is identified in October, most likely related to the fertilization of the second crop in autumn. Incorporating these new findings on NH₃ emission patterns will enable a better parametrization of models and hence improve the modelling of air quality and subsequent impacts on ecosystems through reactive N deposition.
Show more [+] Less [-]Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils Full text
2021
Wei, Wei | Isobe, Kazuo | Shiratori, Yutaka | Yano, Midori | Toyoda, Sakae | Koba, Keisuke | Yoshida, Naohiro | Shen, Haoyang | Senoo, Keishi
Nitrous oxide (N₂O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH₃ oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N₂O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N₂O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH₃ oxidizers and denitrifiers, including the previously-overlooked taxa, in N₂O emission from a cropland, and address the biological and environmental factors controlling the N₂O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N₂O production than the long-studied ones. We also demonstrated that the N₂O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N₂O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N₂O production by overlooked denitrifying bacteria and N₂O reduction by long-studied N₂O-reducing bacteria after manure fertilization into the plowed layer; and (3) N₂O production by NH₃-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH₃ oxidizers and denitrifiers, which will help us understand the environmental context-dependent N₂O emission processes.
Show more [+] Less [-]Nitrogen budgets of contrasting crop-livestock systems in China Full text
2021
Jin, Xinpeng | Zhang, Nannan | Zhao, Zhanqing | Bai, Zhaohai | Ma, Lin
The crop-livestock system is responsible for a large proportion of global reactive nitrogen (Nr) losses, especially from China. There are diverse livestock systems with contrasting differences in feed, livestock and manure management. However, it is not yet well understood which factors greatly impact on the nitrogen (N) budgets and losses of each system. In this study, we systematically evaluated the N budgets of the crop-livestock production system from 1980 to 2050 in China by identifying the differences of 20 distinct livestock systems. During 1980 to 2010, the total N flow through the crop-livestock system increased from 21.4 to 49.7 Tg, with large variations in different input/output pathways, due to the strong livestock transitions of production towards to a monogastric and landless industrial system. Different systems contributed differently to the total N budgets in 2010. For example, the landless industrial system contributed 67% of livestock product N output, but accounted for 80% of total mineral N fertilizer use and feed N imports by the whole crop-livestock system. The mixed system had the highest rate of N use efficiency at system level due to high dependence on recycled N. N losses were diversely distributed by different systems, with the mixed ruminant system responsible for the majority of NH₃–N emission in livestock production, and the grazing ruminant system dominant in NO₃–N losses in feed production. The total N entering the crop-livestock system is estimated to be 53.9 Tg with total N losses of 41.3 Tg in 2050 under a business-as-usual scenario. However, this amount could be significantly decreased through combined measures that indicate a considerable potential for future improvements. Overall, our results provide new insights into N use and the management of livestock production.
Show more [+] Less [-]