Refine search
Results 1-10 of 107
Impact de la pollution atmospherique fluoree d' origine industrielle sur l' environnement de la region d' Annaba (Algerie) [usine d' engrais phosphates].
1987
Semadi A.
Reponses des vegetaux d' une region aride a une pollution atmospherique double: (SO2 + composes fluores).
1994
Ferjani B.A. | Belgacem H. | Makki B.
Solubilisation du fluor par acidolyse des argiles.
1986
Bardy E.A. | Pere C.
The longitudinal biomonitoring of residents living near the waste incinerator of Turin: Polycyclic aromatic hydrocarbon metabolites after three years from the plant start-up
2022
Iamiceli, A.L. | Abate, V. | Bena, A. | De Filippis, Sp | De Luca, S. | Iacovella, N. | Farina, E. | Gandini, M. | Orengia, M. | De Felip, E. | Abballe, A. | Dellatte, E. | Ferri, F. | Fulgenzi, Ar | Ingelido, A.M. | Ivaldi, C. | Marra, V. | Miniero, R. | Crosetto, L. | Procopio, E. | Salamina, G.
The waste-to-energy (WTE) incinerator plant located in the Turin area (Italy) started to recover energy from the combustion of municipal solid waste in 2013. A health surveillance program was implemented to evaluate the potential health effects on the population living near the plant. This program included a longitudinal biomonitoring to evaluate temporal changes of some environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs), in residents living in areas near the Turin incinerator (exposed group, E) compared to those observed in subjects living far from the plant (not exposed group, NE). Ten monohydroxy-PAHs (OH-PAHs), consisting in the principal metabolites of naphthalene, fluorine, phenanthrene, and pyrene, were analyzed in urines collected from the E and NE subjects after one (T₁) and three years (T₂) of plant activity and compared with those determined in the same cohort established before the plant start-up (T₀). Spearman correlation analysis was undertaken to explore possible associations between OH-PAHs and personal characteristics, lifestyle variables, and dietary habits. A linear mixed model (LMM) approach was applied to determine temporal trends of OH-PAHs observed in the E and NE subjects and to evaluate possible differences in trend between the two groups. Temporal trends of OH-PAHs determined by LMM analysis demonstrated that, at all times, the E group had concentrations lower than those assessed in the NE group, all other conditions being equal. Moreover, no increase in OH-PAH concentrations was observed at T₁ and T₂ either in E or in NE group. Significant positive correlations were found between all OH-PAHs and smoking habits. Regarding variables associated to outdoor PAH exposure, residence near high traffic roads and daily time in traffic road was positively correlated with 1-hydroxynaphthalene and 1-hydroxypyrene, respectively. In conclusion, no impact of the WTE plant on exposure to PAHs was observed on the population living near the plant.
Show more [+] Less [-]Distribution of florfenicol and norfloxacin in ice during water freezing process: Dual effects by fluorine substituents
2022
Sun, Heyang | Chen, Tianyi | Zhang, Liwen | Dong, Deming | Li, Yanchun | Guo, Zhiyong
Distribution in ice is regarded as one of important transport modes for pollutants in seasonal freeze-up waters in cold regions. However, the distribution characteristics and mechanisms of fluorinated antibiotics as emerging contaminants during the water freezing process remain unclear. Here, florfenicol and norfloxacin were selected as model fluorinated antibiotics to investigate their ice-water distribution. Effects of antibiotic molecular structure on the distribution were explored through comparative studies with their non-fluorinated structural analogs. Results showed that phase changes during the ice growth process redistributed the antibiotics, with antibiotic concentrations in water 3.0–6.4 times higher than those in ice. The solute-rich boundary layer with a concentration gradient was presented at the ice-water interface and controlled by constitutional supercooling during the freezing process. The ice-water distribution coefficient (KIW) values of antibiotics increased by 34.8%–38.0% with a doubling of the cooling area. The solute distribution coefficient (Kbₛ) values of antibiotics at −20 °C were 65.6%–70.3% higher than at −10 °C. The KIW and Kbₛ values of all antibiotics were negatively correlated with their water solubilities. The fluorine substituents influenced the binding energies between antibiotics and ice, resulting in a 1.1-fold increase in the binding energy of norfloxacin on the ice surface relative to its structural analog pipemidic acid. The results provide a new insight into the transport behaviors of fluorinated pharmaceuticals in ice-water systems.
Show more [+] Less [-]Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater
2022
Kumar, Vaidyanathan Vinoth | Venkataraman, Swethaa | Kumar, P Senthil | George, Jenet | Rajendran, Devi Sri | Shaji, Anna | Lawrence, Nicole | Saikia, Kongkona | Rathankumar, Abiram Karanam
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO₄ (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S⁻¹mM⁻¹ for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Show more [+] Less [-]Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China
2020
Zhang, Bo | He, Yuan | Huang, Yingyan | Hong, Danhong | Yao, Yiming | Wang, Lei | Sun, Wenwen | Yang, Baoqin | Huang, Xiongfei | Song, Shiming | Bai, Xueyuan | Guo, Yuankai | Zhang, Tao | Sun, Hongwen
With the phase out of perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), the composition profiles of poly- and perfluoroalkyl substance (PFAS) in our living environment are unclear. In this study, 25 PFASs were analyzed in indoor dust samples collected from urban, industrial, and e-waste dismantling areas in China. PFOS alternatives, including 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) (median: 5.52 ng/g) and 8:2 chlorinated polyfluorinated ether sulfonate (8:2 Cl-PFESA) (1.81 ng/g), were frequently detected. By contrast, PFOA alternatives, such as hexafluoropropylene oxide dimer acid (HPFO-DA, Gen-X) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA), were not found in any of the dust samples. As expected, all legacy PFASs were widely observed in indoor dust, and 4 PFAS precursors were also detected. Dust concentrations of 6:2 Cl-PFESA were strongly correlated (p < 0.05) with those of 8:2 Cl-PFESA regardless of sampling sites. 6:2 Cl-PFESA was also significantly associated with that of PFOS in industrial and e-waste (p < 0.01) areas. Association analysis suggested that the sources of PFOS and its alternatives are common or related. Although ∑Cl-PFESA concentration was lower than that of PFOS (17.4 ng/g), industrial areas had the highest 6:2 Cl-PFESA/PFOS ratio (0.63). Composition profiles of PFASs in the industrial area showed the forefront of fluorine change. Thus, the present findings suggested that Cl-PFESAs are widely used as PFOS alternatives in China, and high levels of human Cl-PFESA exposure are expected in the future. Short-chain PFASs (C4–C7) were the predominant PFASs found in dust samples, contributing to over 40% of ∑total PFASs. Furthermore, perfluoro-1-butanesulfonate/PFOS and perfluoro-n-butanoic acid (PFBA)/PFOA ratios were 2.8 and 0.72, respectively. These findings suggested shifting to the short-chain PFASs in the environment in China. To the authors knowledge this is the first study to document the levels of 6:2 Cl-PFESA, 8:2 Cl-PFESA in indoor dust.
Show more [+] Less [-]Fluorine in vegetation due to an uncontrolled release of gaseous fluorides from a glassworks: A case study of measurement uncertainty, dispersion pattern and compliance with regulation
2019
Štepec, Dona | Tavčar, Gašper | Ponikvar-Svet, Maja
This study was initiated after the appearance of chlorotic and necrotic lesions on vegetation in the vicinity of a glassworks. The aim was to establish whether the cause was an uncontrolled release of gaseous fluorides. Five different plant species (Norway spruce, peach, common hornbeam, common bean, common grape vine) were collected in the influenced area, and the fluorine (F) content was determined by a fluoride ion selective electrode after prior total sample decomposition by alkaline carbonate fusion. The measurement results were reported together with their measurement uncertainties (MUs), which were evaluated according to the Guide to the Expression of Uncertainty in Measurement. The F contents at comparable distances from the emitter and in a clean area, free from natural or anthropogenic fluoride emissions, were 87–676 and 10 μg g⁻¹, respectively, thereby confirming the release of gaseous fluorides from the glassworks. The F contents in samples of Norway spruce taken at various radial distances from the emitter suggest that the emitted gaseous fluorides were spread about evenly in all directions from the source following an inverse-power function. Estimated distances at which the F content would decrease to 50 μg g⁻¹ (allowed maximum content of F in feeding stuffs) and 21 μg g⁻¹ (maximum fluoride content in vegetables and fruits in relation to the upper limit of fluoride intake for humans) were 378 m and 571 m, respectively, from the emitter. Evaluation of our results for compliance with specification revealed a lack of regulation on fluoride content in the diet of humans and animals as well as a lack of guidelines on how to take into account MU.
Show more [+] Less [-]Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China
2016
Chen, Shu | Jiao, Xing-Chun | Gai, Nan | Li, Xiao-Jie | Wang, X. C. | Lu, Guo-Hui | Piao, Hai-Tao | Rao, Zhu | Yang, Yong-Liang
Little research on perfluorinated compounds (PFCs) has been conducted in rural areas, although rural PFC sources are less complicated than in urban and industrial areas. To determine the levels and geographical distribution of 17 PFC compounds, samples of soil, surface water, and groundwater were collected from eight rural areas in eastern China. The total PFC concentrations (∑PFCs) in soils ranged from 0.34 to 65.8 ng/g ∑PFCs in surface waters ranged from 7.0 to 489 ng/L and ∑PFCs in groundwater ranged from 5.3 to 615 ng/L. Ratios of perfluorononanoic acid/perfluorooctanoic acid (PFNA/PFOA), perfluoro-n-butyric acid/perfluorooctanoic acid (PFBA/PFOA), and perfluoroheptanoic acid/perfluorooctanoic acid (PFHpA/PFOA) in rainwater increased due to the fluorine chemical plants in the surrounding rural and urban areas, suggesting that atmospheric precipitation may carry PFCs and their precursors from the fluorochemical industrial area to the adjacent rural areas.
Show more [+] Less [-]Revisiting pesticide pollution: The case of fluorinated pesticides
2022
Alexandrino, Diogo A.M. | Almeida, C. Marisa R. | Mucha, Ana P. | Carvalho, Maria F.
Fluorinated pesticides acquired a significant market share in the agrochemical sector due to the surge of new fluoroorganic ingredients approved in the last two decades. This growing trend has not been accompanied by a comprehensive scientific and regulatory framework entailing all their potential negative impacts for the environment, especially when considering the hazardous properties that may result from the incorporation of fluorine into organic molecules. This review aims to address the safe/hazardous dichotomy associated with fluorinated pesticides by providing an updated outlook on their relevancy in the agrochemical sector and how it leads to their role as environmental pollutants. Specifically, the environmental fate and distribution of these pesticides in the ecosystems is discussed, while also analysing their potential to act as toxic substances for non-target organisms.
Show more [+] Less [-]