Refine search
Results 1-10 of 11
The mobility, partitioning and degradation of atrazine and simazine in the salt marsh environment.
1995
Meakins N.C. | Bubb J.M. | Lester J.N.
The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils
2013
Parsons, Christopher T. | Couture, Raoul-Marie | Omoregie, Enoma O. | Bardelli, Fabrizio | Greneche, Jean-Marc | Roman-Ross, Gabriela | Charlet, Laurent
Arsenic contamination of floodplain soils is extensive and additional fresh arsenic inputs to the pedosphere from human activities are ongoing.We investigate the cumulative effects of repetitive soil redox cycles, which occur naturally during flooding and draining, on a calcareous fluvisol, the native microbial community and arsenic mobility following a simulated contamination event.We show through bioreactor experiments, spectroscopic techniques and modelling that repetitive redox cycling can decrease arsenic mobility during reducing conditions by up to 45%. Phylogenetic and functional analyses of the microbial community indicate that iron cycling is a key driver of observed changes to solution chemistry. We discuss probable mechanisms responsible for the arsenic immobilisation observed in-situ. The proposed mechanisms include, decreased heterotrophic iron reduction due to the depletion of labile particulate organic matter (POM), increases to the proportion of co-precipitated vs. aqueous or sorbed arsenic with α-FeOOH/Fe(OH)3 and potential precipitation of amorphous ferric arsenate.
Show more [+] Less [-]Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt)
2020
Shaheen, Sabry M. | Antoniadis, Vasileios | Kwon, Eilhann | Song, Hocheol | Wang, Shan-Li | Hseu, Zeng-Yei | Rinklebe, Jörg
The aim of this study was to assess the soil contamination caused by potentially toxic elements (Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, V, and Zn) using various indices and the associated risk of human health for adults and children in selected soils from Germany (Calcic Luvisols, Tidalic Fluvisols, Haplic Gleysols, and Eutric Fluvisols) and Egypt (Haplic Calcisols, Sodic Fluvisols, and Eutric Fluvisols). Soil contamination degree has been assessed using indices such as contamination factor (CF), pollution load index (PLI), geo-accumulation index (Igₑₒ), and enrichment factor. We also assessed the health risk for children and for male and female adults. Chromium, Cu, As, Mo, Ni, Se, and Zn in the German Fluvisols had high CF of >6, while in the Egyptian Fluvisols Se, Mo, As, and Al revealed a high CF. The PLI (1.1–5.2) was higher than unity in most soils (except for Tidalic Fluvisols), while the most important contributor was Se, followed by Mo and As in the Egyptian Fluvisols, and by Cr, Cu, and Zn in the German Fluvisols. The median value of hazard index (HI) for children in the studied soils indicated an elevated health risk (higher than one), especially in the German Fluvisols (HI = 4.0–29.0) and in the Egyptian Fluvisols (HI = 2.2–5.2). For adults, median HIs in all soils were lower than unity for both males and females. The key contributor to HI was As in the whole soil profiles, accounting for about 59% of the total HIs in all three person groupings. Our findings show that in the studied multi-element contaminated soils the risk for children’s health is higher than for adults; while mainly As (and Al, Cr, Cu, and Fe) contributed significantly to soil-derived health risk.
Show more [+] Less [-]Occurrence of Chlorotriazine herbicides and their transformation products in arable soils
2017
Scherr, Kerstin E. | Bielská, Lucie | Kosubová, Petra | Dinisová, Petra | Hvězdová, Martina | Šimek, Zdeněk | Hofman, Jakub
Chlorotriazine herbicides (CTs) are widely used pest control chemicals. In contrast to groundwater contamination, little attention has been given to the circumstances of residue formation of parent compounds and transformation products in soils.Seventy-five cultivated floodplain topsoils in the Czech Republic were sampled in early spring of 2015, corresponding to a minimum of six months (current-use terbuthylazine, TBA) and a up to a decade (banned atrazine, AT and simazine, SIM) after the last herbicide application. Soil residues of parent compounds and nine transformation products were quantified via multiple residue analysis using liquid chromatography - tandem mass spectrometry of acetonitrile partitioning extracts (QuEChERS). Using principal component analysis (PCA), their relation to soil chemistry, crops and environmental parameters was determined.Of the parent compounds, only TBA was present in more than one sample. In contrast, at least one CT transformation product, particularly hydroxylated CTs, was detected in 89% of the sites, or 54% for banned triazines. Deethylated and bi-dealkylated SIM or AT residues were not detectable. PCA suggests the formation and/or retention of CT hydroxy-metabolite residues to be related to low soil pH, and a direct relation between TBA and soil organic carbon, and between deethyl-TBA and clay or Ca contents, respectively, the latter pointing towards distinct sorption mechanisms. The low historic application of simazine contrasted by the high abundance of its residues, and the co-occurrence with AT residues suggests the post-ban application of AT and SIM banned triazines as a permitted impurity of TBA formulations as a recent, secondary source.The present data indicate that topsoils do not contain abundant extractable residues of banned parent chlorotriazines, and are thus likely not the current source for related ground- and surface water contamination. In contrast, topsoils might pose a long-term source of TBA and CT transformation products for ground and surface water contamination.
Show more [+] Less [-]Organism-induced accumulation of iron, zinc and arsenic in wetland soils
1997
Doyle, M.O. | Otte, M.L. (Department of Botany, University College Dublin, Belfield, Dublin 4 (Ireland))
Retention and distribution of heavy metals in mangrove soils receiving wastewater
1996
Tam, N.F.Y. | Wong, Y.S. (Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China))
An association of mangrove mutation, scarlet ibis, and mercury contamination in Trinidad, West Indies
1999
Klekowski, E.J. | Temple, S.A. | Siung-Chang, A.M. | Kumarsingh, K. (Biology Department, University of Massachusetts, Amherst, MA 01003 (USA))
Humic substances in Fluvisols of the Lower Vistula floodplain, North Poland
2018
Banach-Szott, Magdalena | Kondratowicz-Maciejewska, Krystyna | Kobierski, Mirosław
The present study describes properties of humic substances of the Fluvisols (the Lower Vistula, Poland). Fluvisols under agricultural management (arable soil and grassland) were sampled from the surface horizon 50, 200, 600, and 900 m from the Vistula River. The content of carbon in the fractions of humic acids (CHAₛ), fulvic acids (CFAₛ), and humins (CHUMIN) as well as the content of dissolved organic carbon (DOC) were assayed. The organic matter of the soils that were sampled 200 m from the river demonstrated a lowest share of the humic acids (HAs) and fulvic acids (FAs). The percentage share of the hydrophilic fractions (HIL) in the HAs and, as a result the value of the HIL/ΣHOB ratio, increased with the distance from the riverbed. The HAs of the soils located further from the riverbed had a higher degree of humification compared to the HAs of the soils that were sampled 50 and 200 m away. Based on the research results, it was determined that the properties of HAs can be used to evaluate the effect of flood events, their location, and scope on the transformation of the organic matter in fluvial sediments.
Show more [+] Less [-]Repellents Preventing Hoofed Game Browsing Can Alter the Mobility of Nutrients in Soil
2016
Jakl, Michal | Vecková, Eliška | Száková, Jiřina
To protect forest cultures against browsing, chemical repellents can be used. With their applications, however, a problem arises with disruption of biological and chemical equilibria in the environment (e.g., soil-plant system). The aim of this study were to assess possible interactions of repellents, denatonium benzoate (DB), and capsaicin (Cps), with the soil matrix, especially the impact of their addition on the mobility of individual micronutrients and macronutrients, such as calcium, copper, iron, magnesium, manganese, phosphorus, sulfur, and zinc, and to verify the hypothesis that the presence of repellent compounds does not affect the plant-available nutrient concentrations in soil. Batch laboratory soil sorption experiment and the “diffusive gradient in thin films” (DGT) technique were applied to evaluate the elements’ mobility in the soils. Sorption experiment using Chernozem and Fluvisol showed decreased mobile forms of Cu and S with the additions of both repellents and conversely increased mobile forms of Ca and Mn for DB, in both soil types. With increasing Cps rates, the mobile forms of Fe in Chernozem decreased and Mn in Fluvisol increased. The DGT experiment confirmed increased mobile/available Mn in both soils for both repellents and Fe in Fluvisol in the case of capsaicin. Soil application of both, DB and Cps, suggested to be able to influence the elements’ mobility, particularly, Mn mobility in soil significantly increased after repellent application. Their possible behavior in rhizosphere soil/soil solution should be investigated in further research.
Show more [+] Less [-]The Variable Fate of Ag and TiO2 Nanoparticles in Natural Soil Solutions—Sorption of Organic Matter and Nanoparticle Stability
2019
Degenkolb, Laura | Kaupenjohann, Martin | Klitzke, Sondra
Engineered nanoparticles (NP) like Ag and TiO₂ offer unique properties for various applications. Thus, the entry of the NP in soil environments is expected to increase in the future due to their growing industrial use. To avoid potential hazards due to these anthropogenic products, NP behavior in the environment should be well understood. In natural soil solutions, we investigated NOM adsorption onto Ag and TiO₂ NP and its influence on NP colloidal stability. Therefore, we extracted soil solutions from a floodplain soil (Fluvisol) and a farmland soil (Cambisol) differing in NOM quality and inorganic ion concentration. We measured the amount of adsorbed organic carbon as well as changes in aromaticity and molecular weight of NOM upon adsorption onto NP. Additionally, the size and zeta potential of NP in both soil solutions were investigated. We observed that the highly hydrophilic NOM of floodplain soil solution rich in inorganic ions strongly adsorbed to Ag but not to TiO₂ NP. Instead, sorption to TiO₂ NP was observed for the more hydrophobic NOM of the farmland soil with low ionic strength which did not sorb to Ag NP. These differences had a strong effect on NP stability, leading to Ag NP destabilization in case of floodplain soil solution and TiO₂ NP stabilization in the presence of farmland soil solution. Our results point out the necessity of studies in more complex systems and suppose that oxic and metallic NP might show very different fate depending on the environment they are exposed to.
Show more [+] Less [-]