Refine search
Results 1-10 of 53
Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation
2022
Liu, Yinglin | Cao, Xuesong | Yue, Le | Wang, Chuanxi | Tao, Mengna | Wang, Zhenyu | Xing, Baoshan
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO₂ NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO₂ NMs maintained Na⁺/K⁺ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO₂ NMs application, indicating that CeO₂ NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO₂ NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO₂ NMs foliar application. These results will provide new insights for the application of CeO₂ NMs in management to reduce the salinity-caused crop loss.
Show more [+] Less [-]Differential effects of biogenic and chemically synthesized silver-nanoparticles application on physiological traits, antioxidative status and californidine content in California poppy (Eschscholzia californica Cham)
2022
Hajian, Mohammad Hossein | Ghorbanpour, Mansour | Abtahi, Faezehossadat | Hadian, Javad
Silver nanoparticles (AgNPs) of both biologically and chemically origins trigger various physiological and metabolic processes through interaction with plant cells, exerting positive, negative and inconsequential effects. However, their impacts on plant systems must be critically investigated to guarantee their safe application in food chain. In this study, the effects of chemically synthesized (synthetic) AgNPs (sAgNPs) and biologically synthesized (biogenic) AgNPs (bAgNPs) on physiological and biochemical features of Eschscholzia californica Cham were evaluated at different concentrations (0, 10, 25, 50 and 100 mg L⁻¹). Plants exposed to bAgNPs (at 10 and 25 mg L⁻¹) and sAgNPs (at 10 mg L⁻¹) displayed relatively uniform deposition of AgNPs on leaf surface, however, the higher concentration (100 mg L⁻¹) was accompanied by aggregation of AgNPs, resulting in anatomical and physiological disorders. Foliar application of both AgNPs at lower concentrations resulted in significant (P < 0.01) improve in the content of photosynthetic pigments (chlorophylls a, b, a+b, and carotenoids) and total phenolics over the control in a dose-related manner. Leaf relative water content decreased steadily with increasing both sAgNPs and bAgNPs concentrations-with sAgNPs being more inhibitive. Both types of AgNPs at 100 mg L⁻¹ significantly (P < 0.05) increased electrolyte leakage index, level of lipid peroxidation product (malondialdehyde), and leaf soluble sugar content when compared to controls. No significant difference was found on cell membrane stability index among the plants exposed to bAgNPs and sAgNPs at the lowest concentration over the control. Californidine content was significantly (P < 0.01, by 45.1%) increased upon all the bAgNPs treatments (with a peak at 25 mg L⁻¹) relative to control. The obtained extracts from plants treated with bAgNPs at lower concentrations revealed a significant induction of antioxidant capacity (based on DPPH˙ free radical scavenging and ferrous ions-chelating activities) with lower IC₅₀ values compared to the other treatments. Conclusively, bAgNPs at lower concentrations are potent elicitors of pharmaceutically active compounds biosynthesis, which enhance physiological efficiency of E. californica, but at higher concentrations bAgNPs are equally toxic as sAgNPs.
Show more [+] Less [-]Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana
2022
He, Jianzhou | Zhang, Li | He, Sheng Yang | Ryser, Elliot T. | Li, Hui | Zhang, Wei
Application of nanopesticides may substantially increase surface attachment and internalization of engineered nanoparticles (ENPs) in food crops. This study investigated the role of stomata in the internalization of silver nanoparticles (Ag NPs) using abscisic acid (ABA)-responsive ecotypes (Ler and Col-7) and ABA-insensitive mutants (ost1-2 and scord7) of Arabidopsis thaliana in batch sorption experiments, in combination with microscopic visualization. Compared with those of the ABA-free control, stomatal apertures were significantly smaller for the Ler and Col-7 ecotypes (p ˂ 0.05) but remained unchanged for the ost1-2 and scord7 mutants, after exposure to 10 μM ABA for 1 h. Generally Ag NP sorption to the leaves of the Ler and Col-7 ecotypes treated with 10 μM ABA was lower than that in the ABA-free control, mainly due to ABA-induced stomatal closure. The difference in Ag NP sorption with and without ABA was less pronounced for Col-7 than for Ler, suggesting different sorption behaviors between these two ecotypes. In contrast, there was no significant difference in foliar sorption of Ag NPs by the ost1-2 and scord7 mutants with and without ABA treatment. Ag NPs were widely attached to the Arabidopsis leaf surface, and found at cell membrane, cytoplasm, and plasmodesmata, as revealed by scanning electron microscopy and transmission electron microscopy, respectively. These results highlight the important role of stomata in the internationalization of ENPs in plants and may have broad implications in foliar application of nanopesticides and minimizing contamination of food crops by ENPs.
Show more [+] Less [-]Foliar application of the sulfhydryl compound 2,3-dimercaptosuccinic acid inhibits cadmium, lead, and arsenic accumulation in rice grains by promoting heavy metal immobilization in flag leaves
2021
Yang, Xiaorong | Wang, Changrong | Huang, Yongchun | Liu, Bin | Liu, Zhongqi | Huang, Yizong | Cheng, Liulong | Huang, Yanfei | Zhang, Changbo
Mixed pollution due to heavy metals (HMs), especially cadmium (Cd), lead (Pb), and arsenic (As), seriously endangers the safety of food produced in paddy soil. In the field experiments, foliar application of 2,3-dimercaptosuccinic acid (DMSA) at the flowering stage was found to significantly reduce the levels of Cd, Pb, total As, and inorganic As (iAs) in rice grains by 47.95%, 61.76%, 36.37%, and 51.24%, respectively, without affecting the concentration of metallonutrients, including Mn, K, Mg, Ca, Fe, and Zn. DMSA treatment significantly reduced the concentrations of Cd, Pb, and As in the panicle node, panicle neck, and rachis, while those in the flag leaves were significantly increased by up to 20.87%, 49.40%, and 32.67%, respectively. DMSA application promoted the transport of HM from roots and lower stalks to flag leaves with a maximum increase of 34.55%, 52.65%, and 46.94%, respectively, whereas inhibited the transport of HM from flag leaves to panicle, rachis, and grains. Therefore, foliar application of DMSA reduced Cd, Pb, and As accumulation in rice grains by immobilizing HMs in flag leaves. Thus, this strategy could act as a promising agronomic measure for the remediation of mixed HM contamination in paddy fields.
Show more [+] Less [-]Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress
2019
Iftikhar, Azka | Ali, Shafaqat | Yasmeen, Tahira | Arif, Muhammad Saleem | Zubair, Muhammad | Rizwan, Muhammad | Alhaithloul, Haifa Abdulaziz S. | Alayafi, Aisha A.M. | Soliman, Mona H.
The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.
Show more [+] Less [-]Effects of foliar applications of ceria nanoparticles and CeCl3 on common bean (Phaseolus vulgaris)
2019
Xie, Changjian | Ma, Yuhui | Yang, Jie | Zhang, Boxin | Luo, Wenhe | Feng, Sheng | Zhang, Junzhe | Wang, Guohua | He, Xiao | Zhang, Zhiyong
In this study, comparative effects of foliar application of ceria nanoparticles (NPs) and Ce3+ ions on common bean plants were investigated. Soil grown bean seedlings were exposed to ceria NPs and Ce3+ ions at 0, 40, 80, and 160 mg Ce·L−1 every other day at the vegetative growth stage for 17 d. The plants were harvested 47 d after the last treatment. Performed analyses involved growth, physiological and biochemical parameters of the plants and nutritional quality of the pods. Ceria NPs at 40 mg Ce·L−1 increased dry weight of the plants by 51.8% over the control. Neither ceria NPs nor Ce3+ ions significantly affected other vegetative growth parameters. Pod yields and nutrient contents except for several mineral elements were also not significantly different among groups. Compared to control, pods from ceria NPs at 80 mg Ce·L−1 had significantly less S and Mn. At 40 and 80 mg Ce·L−1, ceria NPs reduced pod Mo by 27% and 21%, while Ce3+ ions elevated Mo contents by 20% and 18%, respectively, compared with control. Ce3+ ions at 80 and 160 mg Ce·L−1 significantly increased pod Zn by 25% and 120%, respectively, compared with control. At the end of the experiment, Ce3+ ions at 40, 80, and 160 mg Ce·L−1 increased contents of malondialdehyde (MDA) by 46%, 65%, and 82% respectively as compared with control. While ceria NPs led to a significant increase of MDA level only at the highest concentration. X-ray absorption near edge structure (XANES) analysis of the leaf samples revealed that both ceria NPs and Ce3+ ions kept their original chemical species after foliar applications, suggesting the observed effects of ceria NPs and Ce3+ ions on the plants were probably due to their nano-specific properties and ionic properties respectively.
Show more [+] Less [-]Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Show more [+] Less [-]Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways
2021
Li, Dong | Zhou, Chunran | Zou, Nan | Wu, Yangliu | Zhang, Jingbang | An, Quanshun | Li, Jia-Qi | Pan, Canping
An emerging stress of pesticides in plant and soil is closely watched as it affects crop antioxidant systems, nutritional quality, and flavor. Although selenium (Se) can enhance the resistance of plants, the protective mechanism of nanoselenium is still not known under the long-term pesticide stress in tea trees. In this study, we investigated the potential effects of foliar application of nanoselenium for a two-year field experiment on tea plants under pesticide-induced oxidative stress. Compared to control, nano-Se (10 mg/L) markedly enhanced the protein, soluble sugar, carotenoid, tea polyphenols, and catechins contents. High levels of theanine, glutamic acid, proline, and arginine were found to be induced most likely by adjusting the GS-GOGAT cycle. Se-supplementation may promote tea leaves’ secondary metabolism, thus increasing the accumulation of total phenols and flavonoids (apigenin, kaempferol, quercetin, myricetin, and rutin). It also minimized the accumulation of malondialdehyde, hydrogen peroxide, and superoxide anion by activating the antioxidants enzymes including in the AsA-GSH cycle. Selenium-rich tea also showed better fragrance and flavor. In summary, nano-Se can ameliorate the nutrients quality and abiotic stresses resistance of crops.
Show more [+] Less [-]Sunflower resistance against Sclerotinia sclerotiorum is potentiated by selenium through regulation of redox homeostasis and hormones signaling pathways
2022
Chen, Zhiying | Sun, Huiying | Hu, Ding | Wang, Zehao | Wu, Wenliang | Liang, Yue | Guo, Yanbin
White mold of sunflower caused by Sclerotinia sclerotiorum is a devastating disease that causes serious yield losses. Selenium (Se) helps plants resist stress. In this study, the resistance of sunflower to S. sclerotiorum was improved after foliar application of selenite. Selenite sprayed on leaves can be absorbed by sunflowers and transformed to selenomethionine. Consequently, sunflowers treated with Se exhibited a delay in lesion development with decrease by 54% compared to mock inoculation at 36-h post inoculation (hpi). In addition, treatment with Se compromised the adverse effects caused by S. sclerotiorum infection by balancing the regulation of genes involved in redox homeostasis. In particular, cat expression on leaves treated with Se increased to 2.5-fold to alleviate the downregulation caused by S. sclerotiorum infection at 12 hpi. Additionally, apx expression on leaves treated with Se decreased by 36% to alleviate the upregulation caused by S. sclerotiorum infection at 24 hpi, whereas expressions of gpx, pox, and nox on leaves treated with Se also successively decreased by approximately 40–60% to alleviate the upregulation caused by S. sclerotiorum infection at 24 and 36 hpi, respectively. The use of Se also enhanced the regulation of genes involved in hormones signaling pathways, in which expressions of AOC and PAL increased to 2.0- and 1.5-fold, respectively, to enhance the upregulation caused by S. sclerotiorum infection at 12 hpi, whereas expressions of AOC and PDF1.2 increased to 2.7- and 1.8-fold at 24 hpi, respectively. In addition, EIN2 expression on leaves treated with Se increased to 1.8-, 2.0-, and 1.5-fold to alleviate the downregulation caused by S. sclerotiorum infection. These results suggest that Se can improve sunflower defense responses against S. sclerotiorum infection aiming a sustainable white mold management.
Show more [+] Less [-]Integrated application of plant bioregulator and micronutrients improves crop physiology, productivity and grain biofortification of delayed sown wheat
2022
Delay sowing of wheat is a common problem in Punjab that exacerbates serious yield loss. To reduce yield loss and improve yield, different combinations of foliar-applied bioregulator and micronutrients, control (CK), zinc (Zn), boron (B), thiourea (TU), Zn + B (ZnB), Zn + TU (ZnTU), B + TU (BTU), Zn + B + TU (ZnBTU) were applied at booting and grain filling stages in delayed sown wheat in 2017–18 and 2018–19. The results showed that ZnBTU treatment significantly increased leaf area index by 25.06% and 23.21%, spike length by 15.11% and 19.65% in 2017 and 2018, respectively, compared to CK. The ZnBTU treatment also increased 1000-grain weight by 21.96% and 22.01% in 2017 and 2018, respectively, compared to CK. Similarly, higher Zn, B and N contents in straw and grain were recoded for ZnBTU treatment which was statistically similar to ZnB and ZnTU treatments. Overall, ZnBTU treatment also increased the photosynthetic rate, transpiration rate, stomatal conductance by 46.67%, 26.03%, 76.25% and decreased internal CO₂ by 28.18%, compared to CK, respectively. Moreover, ZnBTU also recorded the highest grain yield in 2017–18 (25.05%) and 2018–19 (28.49%) than CK. In conclusion, foliar application of ZnBTU at the booting and grain filling stages of delayed sown wheat could be a promising strategy to increase grain yield.
Show more [+] Less [-]