Refine search
Results 1-10 of 218
Differential effects of biogenic and chemically synthesized silver-nanoparticles application on physiological traits, antioxidative status and californidine content in California poppy (Eschscholzia californica Cham)
2022
Hajian, Mohammad Hossein | Ghorbanpour, Mansour | Abtahi, Faezehossadat | Hadian, Javad
Silver nanoparticles (AgNPs) of both biologically and chemically origins trigger various physiological and metabolic processes through interaction with plant cells, exerting positive, negative and inconsequential effects. However, their impacts on plant systems must be critically investigated to guarantee their safe application in food chain. In this study, the effects of chemically synthesized (synthetic) AgNPs (sAgNPs) and biologically synthesized (biogenic) AgNPs (bAgNPs) on physiological and biochemical features of Eschscholzia californica Cham were evaluated at different concentrations (0, 10, 25, 50 and 100 mg L⁻¹). Plants exposed to bAgNPs (at 10 and 25 mg L⁻¹) and sAgNPs (at 10 mg L⁻¹) displayed relatively uniform deposition of AgNPs on leaf surface, however, the higher concentration (100 mg L⁻¹) was accompanied by aggregation of AgNPs, resulting in anatomical and physiological disorders. Foliar application of both AgNPs at lower concentrations resulted in significant (P < 0.01) improve in the content of photosynthetic pigments (chlorophylls a, b, a+b, and carotenoids) and total phenolics over the control in a dose-related manner. Leaf relative water content decreased steadily with increasing both sAgNPs and bAgNPs concentrations-with sAgNPs being more inhibitive. Both types of AgNPs at 100 mg L⁻¹ significantly (P < 0.05) increased electrolyte leakage index, level of lipid peroxidation product (malondialdehyde), and leaf soluble sugar content when compared to controls. No significant difference was found on cell membrane stability index among the plants exposed to bAgNPs and sAgNPs at the lowest concentration over the control. Californidine content was significantly (P < 0.01, by 45.1%) increased upon all the bAgNPs treatments (with a peak at 25 mg L⁻¹) relative to control. The obtained extracts from plants treated with bAgNPs at lower concentrations revealed a significant induction of antioxidant capacity (based on DPPH˙ free radical scavenging and ferrous ions-chelating activities) with lower IC₅₀ values compared to the other treatments. Conclusively, bAgNPs at lower concentrations are potent elicitors of pharmaceutically active compounds biosynthesis, which enhance physiological efficiency of E. californica, but at higher concentrations bAgNPs are equally toxic as sAgNPs.
Show more [+] Less [-]The synergetic role of rice straw in enhancing the process of Cr(VI) photoreduction by oxalic acid
2020
Zhang, Ling | Sun, Jie | Niu, Weiya | Cao, Fengming
Based on the goal of green and effective removal of chromium (Cr(VI)) pollution in water and the idea of treating waste with waste, rice straw (RS) was firstly and successfully used in enhancing the photoreduction of highly toxic Cr(VI) to less toxic Cr(III) by oxalic acid (Ox). Batch experiments (the effect of Ox concentration, initial Cr(VI) concentration, RS dosage and coexisting ions) in Ox + RS + UV photoreduction system were designed to investigate the reaction process. Through studying the effect of initial pH in the solution, the change of pH during the photoreduction process and the free radical scavenging test, the Cr(VI) photoreduction mechanism in Ox + RS + UV system was revealed. The role of RS in Ox + RS + UV system was also deduced by the analysis of FT-IR, XRD, Mott-Schottky and the verification test of the role of –OH and SiO₂ on RS. The results showed that RS could significantly synergize Ox to reduce Cr(VI) under UV, 1 mM Cr(VI) in aqueous solution was completely removed in 60 min by Ox + RS + UV system. The Cr(VI) photoreduction mechanism in Ox + RS + UV system consisted of multiple parts: the chemical reduction by Ox(few part), the photoreduction by Ox(some part), and the synergistic photoreduction by RS with Ox(large part). The synergism of RS in Ox + RS + UV system was mainly attributed to its components of SiO₂ and –OH of cellulose.
Show more [+] Less [-]Transformation of m-aminophenol by birnessite (δ-MnO2) mediated oxidative processes: Reaction kinetics, pathways and toxicity assessment
2020
Huang, Wenqian | Wu, Guowei | Xiao, Hong | Song, Haiyan | Gan, Shuzhao | Ruan, Shuhong | Gao, Zhihong | Song, Jianzhong
The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.
Show more [+] Less [-]Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves
2020
Environmentally persistent free radicals (EPFRs) are receiving increasing concern due to their toxicity and ubiquity in the environment. To avoid restrictions imposed when using a high-volume active sampler, this study uses tree leaves to act as passive samplers to investigate the spatial distribution characteristics and sources of airborne EPFRs. Tree leaf samples were collected from 120 sites in five areas around China (each approximately 4 km × 4 km). EPFR concentrations in particles (<2 μm) on the surface of 110 leaf samples were detected, ranging from 7.5 × 10¹⁶ to 4.5 × 10¹⁹ spins/g. For the 10 N.D. samples, they were all collected from areas inaccessible by vehicles. The g-values of EPFRs on 68% leaf samples were larger than 2.004, suggesting the electron localized on the oxygen atom, and they were consistent with the road dust sample (g-value: 2.0042). Significant positive correlation was found between concentrations of elemental carbon (tracer of vehicle emissions) and EPFRs. Spatial distribution mapping showed that EPFR levels in various land uses differed noticeably. Although previous work has linked atmospheric EPFRs to waste incineration, the evidence in this study suggests that vehicle emissions, especially from heavy-duty vehicles, are the main sources. While waste incinerators with low emissions or effective dust-control devices might not be an important EPFR contributor. According to our estimation, over 90% of the EPFRs deposited on tree leaves might be attributed to automotive exhaust emissions, as a synergistic effect of primary exhausts and degradation of aromatic compounds in road dust. With adding the trapping agent into the particle samples (<2 μm), signals of hydroxyl radicals were observed. This indicates that EPFRs collected from this phytosampling method can lead to the release of reactive oxygen species (ROS) once they are inhaled by human beings. Thus, this study helps highlight EPFR “hotspots” for potential health risk identification.
Show more [+] Less [-]Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract
2020
Riaz, Ufana | Zia, Jannatun
The present work reports microwave-assisted synthesis of SnO₂ nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO₂ were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV–vis DRS spectra of PANI/SnO₂ revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO₂, PANI, PANI/SnO₂ nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO₂ was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO₂-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO₂-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of OH, O₂⁻ radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO₂-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants.
Show more [+] Less [-]Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal
2020
Yan, Jingchun | Yang, Lei | Qian, Linbo | Han, Lu | Chen, Mengfang
Nano-magnetite supported by biochar (nFe₃O₄/BC) pyrolyzed at temperatures of 300 °C–600 °C was developed to activate hydrogen peroxide (H₂O₂) for the efficient degradation of ethylbenzene in aqueous solution. It was revealed that the degradation efficiency of ethylbenzene and TOC removal were 96.9% and 36.2% respectively after the reaction for 40 min in the presence of initial concentration of 0.1 mmol L⁻¹ ethylbenzene, 2.76 g L⁻¹ nFe₃O₄/BC₅₀₀ with the mass ratio of nFe₃O₄ to BC₅₀₀ of 4:1 and 2.0 mmol L⁻¹ H₂O₂ at pH 7.0. Based on electron paramagnetic resonance (EPR), quenching experiment and X-ray photoelectron spectroscopy (XPS) data, both OH and O₂⁻ radicals were generated in the nFe₃O₄/BC₅₀₀ activated H₂O₂ system, and the OH radicals were the predominant species for the degradation of ethylbenzene. Through electron transfer process, mechanisms of Fe(II), phenolic hydroxyl group and persistent free radicals (PFRs) on BC surfaces accounted for the generation of OH radicals, and Fe(III) in nFe₃O₄ and formed from Fe(II) oxidation responsible for the generation of O₂⁻ radicals in the nFe₃O₄/BC activated H₂O₂ system were proposed.
Show more [+] Less [-]Toxicity of different forms of antimony to rice plants: Effects on reactive oxidative species production, antioxidative systems, and uptake of essential elements
2020
Zhu, Yanming | Wu, Qianhua | Lv, HaiQin | Chen, Wenxiang | Wang, Lizhen | Shi, ShengJie | Yang, JiGang | Zhao, PingPing | Li, Yuanping | Christopher, Rensing | Liu, Hong | Feng, RenWei
Antimonite [Sb(III)] and antimonate [Sb(V)] are known to have different toxicity to plants, but the corresponding mechanisms are not fully understood. This study was conducted to investigate reactive oxygen species (ROS), antioxidant systems, and levels of certain essential elements in response to exposure to Sb(III) and Sb(V). Results showed that exposure to Sb(V) caused oxidative stress in a rice plant (Yangdao No.6). Sb(III) was shown to be more toxic than Sb(V) as judged from a lower shoot biomass, a higher loss of essential elements, and higher production of superoxide anion free radicals (O₂⁻). The toxicity of Sb(III) might partially be due to the disturbance of the O₂ˉ dismutation reaction, which resulted in root cell membrane damage under exposure to 20 mg L⁻¹ Sb(III). Sb(V) stimulated the shoot fresh weight and the shoot uptake of many essential elements. Moreover, Sb(V) and Sb(III) both stimulated the accumulation of calcium in the shoots and roots, and calcium was found to significantly correlate with the concentrations of many essential elements and with some parameters correlated to antioxidant systems, suggesting a Ca-induced regulatory mechanism. The activity of glutathione peroxidase was significantly enhanced by Sb(V) and Sb(III), suggesting a role in scavenging hydrogen peroxide. Catalase was activated by exposure to 20 mg L⁻¹ Sb(III) in the roots and by exposure to 20 mg L⁻¹ Sb(V) both in the shoots and roots. However, peroxidase was activated by exposure to 5 mg L⁻¹ Sb(III) in the shoots and by exposure to 5 mg L⁻¹ Sb(V) in the roots. This study, for the first time, showed the differences between Sb(V) and Sb(III) toxicity when looking at the antioxidant response and essential element uptake.
Show more [+] Less [-]Effective degradation of phenol via catalytic wet peroxide oxidation over N, S, and Fe-tridoped activated carbon
2020
Yang, Guo | Mo, Sha | Xing, Bo | Dong, Jingwen | Song, Xiang | Liu, Xingyong | Yuan, Jigang
The N, S, and Fe-tridoped carbon catalysts (NSFe-Cs), Fe/ACNS1 and Fe/ACNS2, were synthesized by wet impregnation with different concentration of ammonium ferrous sulfate solution. The prepared catalysts have a similar textural structure. The N species, S species, Feᴵᴵ and Feᴵᴵᴵ were simultaneously introduced onto the surface of catalysts. Comparison with the only Fe doped catalyst, NSFe-Cs showed greater stability and higher phenol removal in catalytic wet peroxide oxidation at different reaction condition. The main intermediates including p-hydroxybenzoic acid, formic acid, and maleic acid were determined in the treated wastewater. The high catalytic activity for NSFe-C was related to the ability of H₂O₂ decomposition. NSFe-Cs have more amount of Feᴵᴵ partially due to the formation of FeS₂, which promoted the decomposition of H₂O₂ on Fe/ACNS1 and Fe/ACNS2 surface. The generation of ·OH and ·HO₂/·O₂⁻ radicals in the bulk solution was crucial to phenol degradation, and the decomposition of H₂O₂ complied with the pseudo-first-order kinetics. The highly linear relationship between decomposition kinetic constant for H₂O₂ and the amount of surface groups suggested, including Feᴵᴵ species, pyridinic N/Fe-bonded N, pyrrolic N as well as graphitic N were responsible to the high activity of NSFe-Cs.
Show more [+] Less [-]Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations
2019
Xue, Shengyang | Wu, Chunzheng | Pu, Shengyan | Hou, Yaqi | Tong, Tian | Yang, Guang | Qin, Zhaojun | Wang, Zhiming | Bao, Jiming
Photocatalytic degradation is an attractive strategy to purify waste water contaminated by macromolecular organics. Compared with the single-component photocatalysts, heterostructures of different semiconductors have been widely used to improve the photocatalytic performance. In this work, we fabricate a hetero-structured photocatalyst consisting of two-dimensional graphitic carbon nitride (g-C3N4) nanosheets and commercial MoO3 microparticles through a simple mixing and annealing process. The photocatalytic performance was evaluated in various dye degradation reactions, especially Rhodamine (RhB) degradation. The MoO3/g-C3N4 composite shown a significant improvement compared with individual MoO3 or g-C3N4 as well as their physical mixture. By applying electron spin resonance (ESR) spin-trap spectra, radical scavenge experiments and electrochemical analysis, we find that a direct Z-scheme charge transfer between MoO3 and g-C3N4 not only causes an accumulation of electrons in g-C3N4 and holes in MoO3, but also boosts the formation of superoxide radical and hydroxyl radical. The superoxide radical and hole dominate the photocatalytic degradation, while the hydroxyl radical plays a negligible role and its production can be suppressed by lowering the pH value.
Show more [+] Less [-]Peroxymonosulfate catalyzed by rGO assisted CoFe2O4 catalyst for removing Hg0 from flue gas in heterogeneous system
2019
Zhao, Yi | Nie, Guoxin | Ma, Xiaoying | Xu, Peiyao | Zhao, Xiaochu
The cobalt ferrite-reduced oxidized graphene (CoFe2O4/rGO) catalyst was synthesized by hydrothermal method and characterized by Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Brunauere Emmette Teller (BET) and Hysteresis loop. For developing a new method of removing elemental mercury (Hg0) from flue gas, the effects of catalyst dosage, PMS concentration, solution pH and reaction temperature on the removal efficiency were investigated experimentally by using peroxymonosulfate (PMS) catalyzed by CoFe2O4/rGO at a self-made bubbling reactor. The average removal efficiency of Hg0 in a 30-min period reached 95.56%, when CoFe2O4/rGO dosage was 0.288 g/L, PMS concentration was 3.5 mmol/L, solution pH was 5.5 and reaction temperature was 55 °C. Meanwhile, based on the free radical quenching experiments, in which, ethyl alcohol and tert butyl alcohol were used as quenchers to prove indirectly the presence of •OH and SO4•−, the characterizations of catalysts and reaction products, and the existing results from other scholars. The reaction mechanism was proposed.
Show more [+] Less [-]