Refine search
Results 1-10 of 21
Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions
2022
Wang, Qiuxia | Gao, Suduan | Wang, Dong | Cao, Aocheng
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha⁻¹, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha⁻¹. All biochar treatments significantly reduced emissions by 38–100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99–100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
Show more [+] Less [-]Effects of soil type, moisture content and organic amendment rate on dimethyl disulfide distribution and persistency in soil
2021
Wang, Xianli | Zhang, Yi | Cao, Aocheng | Xu, Jin | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia
Understanding the distribution and persistence of the fumigant dimethyl disulfide (DMDS) under different soil conditions would contribute to a more environmentally sustainable use of this gas. We determined the effects of soil type, soil moisture content and soil organic amendment rate on DMDS distribution and persistency using soil columns in the laboratory. The peak concentrations of DMDS at 60 cm soil depth in sandy loam soil, black soil and red loam soil were 1.9 μg cm⁻³, 0.77 μg cm⁻³, 0.22 μg cm⁻³, respectively. The total soil residues of DMDS in sandy loam soil, black soil and red loam soil were 0.4, 1.3 and 1.3%, respectively. The peak concentrations of DMDS at 60 cm soil depth and the total soil residues of DMDS applied decreased from 3.2 μg cm⁻³ to 0.9 μg cm⁻³ and 3.3 to 0.5% when soil moisture content increased from 6 to 18%, respectively. Incremental increases (0–5%) in organic amendment rates decreased DMDS distribution through the soils and increased soil residues. Wait periods were required of 7, 21 and 21 days after polyethylene (PE) film was removed to reduce residues sufficiently for cucumber seed germination in sandy loam soil, black soil and red loam soil with 12% moisture content and 0% organic amendment rate, respectively. However, no wait period was required for successful cucumber seed germination in sandy loam soils (Beijing) with 6, 12 or 18% moisture content or organic amendment rates of 1 or 5%, respectively, but in commercial practice 7 days delay would be prudent. Our results indicated that soil type, soil moisture content and organic amendment rates significantly affected DMDS distribution, persistency and residues in soil. Those factors should be taken into consideration by farmers when determining the appropriate dose of DMDS that will control soil pests and diseases in commercially-produced crops.
Show more [+] Less [-]The Effects of Biochar Amendment on Dimethyl Disulfide Emission and Efficacy Against Soil-Borne Pests
2016
Wang, Qiuxia | Fang, Wensheng | Yan, Dongdong | Han, Dawei | Li, Yuan | Ouyang, Canbin | Guo, Meixia | Cao, Aocheng
Biochar can potentially reduce fumigant emissions in agriculture. Dimethyl disulfide (DMDS) is an effective soil fumigant for controlling soil-borne pests. However, it is important to reduce DMDS emissions because the compound has an unpleasant and easily perceived sulfur odor. This study therefore aimed to determine the effects of two types of biochar amendments on DMDS bioactivity and emission, using bioassay methods and soil columns. The efficacy of DMDS for controlling root-knot nematode and Fusarium spp. was not reduced when the biochar used in this study was applied at a rate less than 2 and 0.5 % (on a weight basis), respectively. The biochar with high specific surface area (SSA 113 m⁻² g⁻¹) reduced the efficacy of DMDS against soil-borne pests more than the low SSA biochar (14 m⁻² g⁻¹). Increased doses of DMDS were able to offset decreases in the efficacy of DMDS in soils amended with biochars, except for high SSA biochar applied at a rate of 2 %. Biochar amendments applied to the soil surface at shallow depth can significantly reduce DMDS emission to the atmosphere. The results of this study will support decision-making about the practical use of biochar to reduce DMDS emissions.
Show more [+] Less [-]Effect of Biofumigants on Soil Microbial Communities and Ecotoxicology of Earthworms (Eisenia andrei)
2016
Fouché, Tanya | Maboeta, Mark | Claassens, Sarina
Biofumigation is considered a good alternative to chemical fumigation because it can control crop pathogens and diseases with lower health and environmental risks than chemical fumigants. Glucosinolates are volatile compounds found in most Brassica species, and when hydrolysed, it forms a range of natural toxins including isothiocyanates that act as biofumigants. However, the effect of glucosinolates and their breakdown products on non-target and beneficial soil organisms is not well documented. Three biofumigants, broccoli, mustard and oilseed radish, were evaluated for their effect on earthworms (Eisenia andrei) and the soil microbial community. Sub-lethal endpoints, including growth and reproductive success of the earthworms, were monitored. Genotoxicity of the biofumigants towards earthworms was evaluated by means of the comet assay. Broccoli reduced earthworm reproduction while mustard induced more DNA strand breaks in earthworm cells compared to the control. Soil microbial community function and structure were evaluated by means of community level physiological profiling and phospholipid fatty acid analyses. The effects exerted by the biofumigants on the microbial community were the most pronounced within the first 14 days after application. Carbon substrate utilisation was most affected by the oilseed radish treatment and microbial community structure by the mustard treatment.
Show more [+] Less [-]Breakthrough of 1,3-Dichloropropene and Chloropicrin from 600-mg XAD-4 Air Sampling Tubes
2016
Ashworth, Daniel J. | Yates, Scott R.
Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitating accurate concentration measurements. Using laboratory experiments, we studied the effects of air flow rate (100–1000 mL min⁻¹) and sampling time (2–16 h) on the breakthrough of co-applied chloropicrin (CP) and 1,3-dichloropropene (1,3-D) from 600-mg XAD-4 sorbent tubes. Due to the reversible adsorption of the chemicals, it was not possible to determine a tube adsorption capacity that was true across all flow and sample time conditions. Flow rate exerted the stronger influence on breakthrough, particularly for CP, with flow rates in excess of 200 mL min⁻¹ resulting in significant system losses even at the shortest sampling time (2 h). A flow rate of 200 mL min⁻¹ should therefore not be exceeded, irrespective of flow rate. With the use of a single tube (no backup), sampling times up to 4 h showed no system losses (100 % retention). Using a primary and backup tube, sampling periods up to 16 h also resulted in retention of all the added chemical masses. The information will be useful in establishing effective air quality monitoring programs following fumigation events.
Show more [+] Less [-]An emerging chemical fumigant: two-sided effects of dazomet on soil microbial environment and plant response
2022
Chen, Ran | Jiang, Weitao | Xu, Shaozhuo | Fan, Hai | Chen, Xuesen | Shen, Xiang | Yin, Chengmiao | Mao, Zhiquan
Methyl bromide has been banned worldwide because it causes damage to the ozone layer and the environment. To find a substitute for methyl bromide, the relationships among fumigation, plant growth, and the microbial community in replant soil require further study. We performed pot and field experiments to investigate the effects of dazomet fumigation on soil properties and plant performance. Changes in soil microbial community structure and diversity were assessed using high-throughput sequencing, and plant physiological performance and soil physicochemical properties were also measured. Dazomet fumigation enhanced photosynthesis and promoted plant growth in replant soil; it altered soil physical and chemical properties and reduced soil enzyme activities, although these parameters gradually recovered over time. After dazomet fumigation, the dominant soil phyla changed, microbial diversity decreased significantly, the relative abundance of biocontrol bacteria such as Mortierella increased, and the relative abundance of pathogenic bacteria such as Fusarium decreased. Over the course of the experiment, the soil microbial flora changed dynamically, and soil enzyme activities and other physical and chemical properties also recovered to a certain extent. This result suggested that the effect of dazomet on soil microorganisms was temporary. However, fumigation also led to an increase in some resistant pathogens, such as Trichosporon, that affect soil function and health. Therefore, it is necessary to consider potential negative impacts of dazomet on the soil environment and to perform active environmental risk management in China.
Show more [+] Less [-]Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects
2021
Chaudhari, Anand Kumar | Singh, Vipin Kumar | Kedia, Akash | Das, Somenath | Dubey, N. K.
The control of storage insect pests is largely based on synthetic pesticides. However, due to fast growing resistance in the targeted insects, negative impact on humans and non-target organisms as well as the environment, there is an urgent need to search some safer alternatives of these xenobiotics. Many essential oils (EOs) and their bioactive compounds have received particular attention for application as botanical pesticides, since they exhibited high insecticidal efficacy, diverse mode of action, and favourable safety profiles on mammalian system as well as to the non-target organisms. Data collected from scientific articles show that these EOs and their bioactive compounds exhibited insecticidal activity via fumigant, contact, repellent, antifeedant, ovicidal, oviposition deterrent and larvicidal activity, and by inhibiting/altering important neurotransmitters such as acetylcholine esterase (AChE) and octopamine or neurotransmitter inhibitor γ-amino butyric acid (GABA), as well as by altering the enzymatic [superoxide dismutase (SOD), catalase (CAT), peroxidases (POx), glutathione-S-transferase (GST) and glutathione reductase (GR)] and non-enzymatic [glutathione (GSH)] antioxidant defence systems. However, in spite of promising pesticidal efficacy against storage pests, the practical application of EOs and their bioactive compounds in real food systems remain rather limited because of their high volatility, poor water solubility and susceptibility towards degradation. Nanoencapsulation/nanoemulsion of EOs is currently considered as a promising tool that improved water solubility, enhanced bio-efficacy, stability and controlled release, thereby expanding their applicability.
Show more [+] Less [-]Ecotoxicological Assessment of Chemical Fumigants Utilising an Earthworm (Eisenia andrei) Bioassay and Soil Microbial Communities
2017
Fouché, Tanya C. | Claassens, Sarina | Maboeta, Mark S.
Fumigation is an important crop protection practice employed to control soil pathogens and diseases. Metham sodium and cadusafos are two commonly used soil fumigants for this purpose. However, little information is available on their effects on non-target soil organisms. The aim of the study was to determine the ecotoxicity of these chemical fumigants on earthworms (organismal responses and DNA damage) and soil microbial communities. Changes in soil microbial community function and structure were evaluated by means of Biolog™ Ecoplates and phospholipid fatty acid (PLFA) analyses, respectively. Both fumigants had a significant (p < 0.05) negative impact on all earthworm endpoints. Earthworms did not reproduce; biomass was affected negatively and manifested significant DNA damage with metham sodium causing more pronounced effects in comparison to cadusafos. The fumigants had an inhibitory effect on microbial growth. No lasting effects were observed in the community structure but cadusafos had a pronounced effect on the microbial community functional diversity. Metham sodium and cadusafos had varying effects on earthworm and microbial endpoints. This illustrates the importance of using different bioindicators to get a better understanding of the overall effects on the soil ecosystem.
Show more [+] Less [-]Study on the Hydrolysis Kinetics of Dimethyl Disulfide
2017
Han, Dawei | Yan, Dongdong | Cao, Aocheng | Fang, Wensheng | Wang, Xianli | Song, Zhaoxin | Li, Yuan | Ouyang, Canbin | Guo, Meixia | Wang, Qiuxia
Dimethyl disulfide (DMDS) is a new soil fumigant that is considered a good alternative to methyl bromide due to its high activity toward soil-borne pests, with no ozone-depleting potential. The correlative literature for the study of DMDS and its environmental fate is limited. The hydrolysis kinetics of DMDS were studied in buffered aqueous solutions within a pH of 5, 7, and 9, temperature at 15, 25, 45, and 65 °C, and in natural water samples at an ambient temperature of 25 °C. The results showed that DMDS hydrolysis rates were accelerated by increases in pH and temperature. The calculated half-lives of DMDS hydrolysis in the solutions of pH 5, 7, and 9 were 13.91, 10.81, and 10.52 days, respectively at 25 °C, and the trend showed that DMDS hydrolyzed faster in neutral or mild alkali conditions than in acidic solutions at the same temperature. The calculated half-lives of DMDS hydrolysis in the solutions at 15, 25, 45, and 65 °C were 15.78, 10.81, 9.78, and 7.72 days at pH = 7, respectively. There existed no obvious correlations between the activation energies of DMDS hydrolysis and temperatures. However, the activation entropy absolute values of DMDS hydrolysis increased with increasing temperatures, suggesting that the hydrolysis of DMDS in aqueous solutions was driven by activation entropy. The hydrolysis rates of DMDS in natural water samples are as follows: rice paddy field water > Grand Canal water > tap water. Sterilization of three kinds of natural water samples showed that biodegradation accounted for 4.08, 21.52, and 8.82% in tap water, paddy field water, and Grand Canal water, respectively. This research result has important implications in the scientific evaluation of DMDS.
Show more [+] Less [-]An assessment of vegetation management practices and burrow fumigation with aluminum phosphide as tools for managing voles within perennial crop fields in California, USA
2019
Baldwin, Roger A. | Stetson, Denise I. | Lopez, Manuel G. | Engeman, Richard M.
Voles (Cricetidae) cause extensive damage to a variety of crops throughout much of the Northern Hemisphere. The removal of vegetation from crop fields at the end of the growing season, combined with a subsequent burrow fumigant application of aluminum phosphide, has the potential to substantially curtail vole activity but has not been thoroughly examined. We set up a study to test the impact of these management tools in perennial globe artichoke (Cynara cardunculus var. scolymus) fields in Monterey County, CA, during 2010 and 2011, to determine their potential utility as part of an integrated pest management (IPM) program for managing California voles (Microtus californicus). We used both chewing indices and mortality estimates derived via radiotelemetry to assess the efficacy of aboveground vegetation removal and aluminum phosphide applications on vole abundance. We determined the impact of plowing artichoke fields on vole activity as well. Both removal of vegetation and applications of aluminum phosphide substantially reduced vole presence within treated fields. Plowing also reduced vole abundance to the point of little residual activity following treatment. These management practices appear to be effective at eliminating voles from crop fields. Combining these tools with management practices designed to slow down reinvasion by neighboring vole populations (e.g., barriers, repellents, traps) has the potential to substantially reduce farmer reliance on rodenticides for vole management, although rodenticides will still be needed to curtail populations that reestablish within crop fields. Such an IPM approach should substantially benefit both farmers and agro-ecosystems.
Show more [+] Less [-]