Refine search
Results 1-10 of 15
Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China
2017
Wang, Bin | Yan, Lailai | Huo, Wenhua | Lu, Qun | Cheng, Zixi | Zhang, Jingxu | Li, Zhiwen
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.
Show more [+] Less [-]Trace elements in hazardous mineral fibres
2016
Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed.The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.
Show more [+] Less [-]Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae
2020
Costa, Marcelo | Henriques, Bruno | Pinto, João | Fabre, Elaine | Viana, Thainara | Ferreira, Nicole | Amaral, Joana | Vale, Carlos | Pinheiro-Torres, José | Pereira, Eduarda
Potentially toxic elements (PTEs) are of major concern due to their high persistence and toxicity. Recently, rare earth elements (REEs) concentration in aquatic ecosystems has been increasing due to their application in modern technologies. Thus, this work aimed to study, for the first time, the influence of REEs (lanthanum, cerium, praseodymium, neodymium, europium, gadolinium, terbium, dysprosium and yttrium) and of salinity (10 and 30) on the removal of PTEs (Cd, Cr, Cu, Hg, Ni and Pb) from contaminated waters by living macroalgae (Fucus spiralis, Fucus vesiculosus, Gracilaria sp., Osmundea pinnatifida, Ulva intestinalis and Ulva lactuca). Experiments ran for 168 h, with each macroalga exposed to saline water spiked with the six PTEs and with the six PTEs plus nine REEs (all at 1 μmol L⁻¹) at both salinities. Results showed that all species have high affinity with Hg (90–99% of removal), not being affected neither by salinity changes nor by the presence of other PTEs or REEs. Cd showed the lowest affinity to most macroalgae, with residual concentrations in water varying between 50 and 108 μg L⁻¹, while Pb removal always increased with salinity decline (up to 80% at salinity 10). REEs influence was clearer at salinity 30, and mainly for Pb. No substantial changes were observed in Ni and Hg sorption. For the remaining elements, the effect of REEs varied among algae species. Overall, the results highlight the role of marine macroalgae as living biofilters (particularly U. lactuca), capable of lowering the levels of top priority hazardous substances (particularly Hg) and other PTEs in water, even in the presence of the new emerging contaminants - REEs. Differences in removal efficiency between elements and macroalgae are explained by the contaminant chemistry in water and by macroalgae characteristics.
Show more [+] Less [-]Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS
2016
Saatz, Jessica | Stryhanyuk, Hryhoriy | Vetterlein, Doris | Musat, Niculina | Otto, Matthias | Reemtsma, Thorsten | Richnow, Hans H. | Daus, Birgit
Increasing production of rare earth elements (REE) might lead to future contamination of the environment. REE have been shown to accumulate in high concentrations in roots of plants. Plant experiments with Zea mays exposed to a nutrient solution containing gadolinium (Gd) or yttrium (Y) with 10 mg L−1 Gd or Y were carried out to investigate this accumulation behaviour. Total concentrations of 3.17 g kg−1 and 8.43 g kg−1 of Gd and Y were measured in treated plant roots. Using a novel combination of laser ablation mass spectrometry and time-of-flight secondary ion mass spectrometry, imaging of location and concentration of Gd and Y was carried out in root thin sections of treated roots. Single spots of elevated REE concentration were found at the epidermis, while inside the cortex, weak signals of Gd+ and Y+ were aligning with the root cell structures. The composition of Gd-containing secondary ions proves an REE-oxide phase accumulated at the epidermis, limiting REE availability for further uptake.
Show more [+] Less [-]Inactivation effect and mechanisms of combined ultraviolet and metal-doped nano-TiO2 on treating Escherichia coli and Enterococci in ballast water
2020
Wang, Xixi | Huang, Yanli | Zhang, Kun | Shi, Yue | Lu, Zheng | Wang, Yinhao
The discharge of ship ballast water (containing large amounts of alien organisms) has caused severe ecological hazards to marine environments. In this study, three metal elements (Ag, Fe, and Gd) were doped to nano-TiO₂ material respectively (content: 0.4%, 0.7%, and 1.0%) to improve inactivation effect of Escherichia coli and Enterococci in ballast water. Experimental results indicate that compared with the sole ultraviolet (UV) and the UV and original nano-TiO₂, the UV and metal-doped nano-TiO₂ increased the bacterial inactivation rate to different extents. For each metal element, high external metal content (1.0%) corresponded to high inactivation effort. The doping of Ag resulted in optimal inactivation effort, and the addition of Fe and Gd caused unobvious effort. At the end of the inactivation process (20 s), the UV and 1% Ag-doped nano-TiO₂ reached the highest logarithmic sterilization rates (0.915 for Escherichia coli and 0.805 for Enterococcus). The doping of Ag, Fe, and Gd did not change the anatase phase TiO₂ crystal form, and 1% Ag-doped nano-TiO₂ had the smallest particle diameter and the evenest distribution of nanoparticles. Compared with the sole UV, the UV and Ag-doped nano-TiO₂ treatment resulted in higher malondialdehyde contents (0.0646 μmol/L for Escherichia coli and 0.0529 μmol/L for Enterococci) and lower superoxide dismutase activities (0.672 U/mL for Escherichia coli and 0.792 U/mL for Enterococci), which were in accordance with high inactivation rates in these cases.
Show more [+] Less [-]Impact of a Variable Tungsten Pollution on the Elemental Uptake of Two Plant Species
2018
Semhi, Khadija | Boutin, René | Sivakumar, Nallusamy | Al Busaidi, Walid | Al Hamdi, Abdallah | Al Dhafri, Khamis | Al Busaidi, Ahmed
A radish and a grass species were grown in identical substrates either unpolluted or polluted by tungsten (W) at 1, 5, and 10 μg/g levels of watering solutions during 1 month under controlled laboratory conditions. Initially, at 4.1 μg/g, the W content in grass leaves reached 16 μg/g at the highest rate of W supply to the substrate. For radish, the content of W reached 22 and 29 μg/g in the leaves and roots, respectively. The overall W pollution increased significantly the mobility of major elements from substrate to grass leaves, especially at the 5 μg/g pollution level, whereas the W impact on radish leaves resulted in an increase of most contents, only Mn remaining unaffected. The roots from polluted radishes were enriched in Si by 21% and Al by 42% at low pollution, and in Si by 15% at high supply, whereas the uptake of the other elements remained unchanged. It looks like the W pollution at the levels chosen does not impact the transfer of the major and trace elements from roots to leaves of Raphanus sativus. Alternatively, metallic trace elements (Ba, Ni, Cr, Zn, W, Co) of the Raphanus sativus and Chloris gayana leaves outline similar content changes depending on the amount of W pollution. The total rare-earth element contents of the leaves of Raphanus sativus grown in the polluted substrates are lower than those of the leaves from unpolluted substrate. Their normalization in the leaves and roots of Raphanus sativus from the polluted substrates to those of the radish from non-polluted substrate provides flat patterns for both with a positive Eu anomaly for leaves, as for those of the grass and a negative Gd anomaly for roots. Also, addition of soluble W to the substrates induced an increase in the bacterial activity of the soil.
Show more [+] Less [-]Investigation of pollution levels originated from anthropogenic gadolinium in Ankara Stream
2020
Alkan, Ali | Alkan, Nigar | Yanar, Bahtiyar
Research on pollution caused by gadolinium (Gd) based on compounds as a result of its use in high technological applications, especially in the health sector, has recently become very interesting. This study aims to investigate the determination of the environmental pollution levels of anthropogenic Gd and its possibility of use as an anthropogenic pollutant indicator in the Ankara Stream (Turkey) selected as the pilot stream. Within the scope of the research, Gd levels were determined in water and sediment samples taken in spring and autumn periods in a total of seven different stations, three of which in Ankara Stream and one for each in its tributaries (Çubuk Stream, Hatip Stream, İncesu Creek, Ova Stream). Some parameters related to water and sediment quality were also measured at the stations. Temperature, pH, electrical conductivity, and dissolved oxygen were measured in situ. Gd concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS) technique using samples filtered from 0.45-μm filters at the time of sampling in water samples. The grain sizes of sediment samples were carried out by conventional wet sieve analysis. Gd levels were determined by ICP-MS after digestion of sediment samples passing through 63-μm particle grain size. Also, total organic carbon (TOC) and total phosphorus (TP) levels were measured by classical methods in sediment samples. Although the Gd concentrations measured in the water samples taken from the stations in the Ankara Stream were found to be quite high compared with the tributaries of Ankara Stream. The highest mean Gd concentration (0.347 ± 0.057 μg/L) measured in this study was higher than that of at the most rivers in the world. There was no statistically significant difference between the stations in terms of Gd concentrations in the sediment samples. As a result of this study, it was revealed that Gd can be used as an indicator parameter in the monitoring of anthropogenic pollution of aquatic environment where potential Gd pollution sources.
Show more [+] Less [-]Preparation and characterization of photocatalytic Gd-doped TiO2 nanoparticles for water treatment
2019
Ben Chobba, Marwa | Messaoud, Mouna | Weththimuni, Maduka L. | Bouaziz, Jamel | Licchelli, Maurizio | De Leo, Filomena | Urzì, Clara
In recent years, the photocatalytic process by using TiO₂ nanoparticles (NPs) has produced a great interest in wastewater treatment due to its interesting features such as low-cost, environmental compatibility, and especially capacity to eliminate persistent organic compounds as well as microorganisms in water. In the present work, the photocatalytic activity of Gd-doped TiO₂ nanopowders, with different doping amount 0.1, 1, and 5 mol% synthesized by the sol-gel method, was studied under UV/Visible irradiation for water treatment application. The Gd-doped TiO₂ nanoparticles were investigated for their photocatalytic degradation of methylene blue (MB) dye and antibacterial activities against two bacterial strains namely Stenotrophomonas maltophilia (S. maltophilia) and Micrococcus luteus (M. luteus). MB dye was used as a pollutant model to estimate reactive oxygen species (ROS) generation and to correlate killing action of nanoparticles with the generation of ROS. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Raman spectroscopy were used to characterize the as-synthesized nanomaterials. Photocatalytic, as well as antibacterial tests, showed that doping with an appropriate amount of Gd could reduce the radiative recombination process of photogenerated electron-hole pairs in TiO₂ and induce a significant enhancement in photocatalytic and consequently antibacterial activity. The experimental sequence of bactericidal activity and photocatalytic degradation efficiency exhibited by the different gadolinium-doped nanoparticles was the following: 0.1 mol% Gd-doped TiO₂ > 1 mol% Gd-doped TiO₂ > 5 mol% Gd-doped TiO₂ > pure titania.
Show more [+] Less [-]Comparative toxicity of seven rare earth elements in sea urchin early life stages
2017
Trifuoggi, Marco | Pagano, Giovanni | Guida, Marco | Palumbo, Anna | Siciliano, Antonietta | Gravina, Maria | Lyons, Daniel M. | Burić, Petra | Levak, Maja | Thomas, Philippe J. | Giarra, Antonella | Oral, Rahime
The widespread use of rare earth elements (REEs) in a number of technological applications raises unanswered questions related to REE-associated adverse effects. We have previously reported on the multiple impact of some REEs on the early life stages of the sea urchin Paracentrotus lividus. The present investigation was to evaluate REE toxicity to early life stages in two unrelated sea urchin species, Sphaerechinus granularis and Arbacia lixula. The comparative toxicities were tested of seven REEs, namely yttrium, lanthanum, cerium, neodymium, samarium, europium and gadolinium as chloride salts at concentrations ranging from 10⁻⁷ to 10⁻⁴ M. The evaluated endpoints included developmental defects and cytogenetic anomalies in REE-exposed embryos/larvae, and decreased fertilization success and offspring damage following sperm exposure. The results showed different toxicity patterns for individual REEs that varied according to test species and to treatment protocol, thus showing toxicity scaling for the different REEs. Further, the observed effects were compared with those reported for P. lividus either following embryo or sperm exposures. S. granularis showed a significantly higher sensitivity both compared to A. lixula and to P. lividus. This study provides clear-cut evidence for distinct toxicity patterns among a series of REEs. The differences in species sensitivity at micromolar REE levels may warrant investigations on species susceptibility to impacts along polluted coasts.
Show more [+] Less [-]Bioaccumulation of gadolinium in freshwater bivalves
2017
Perrat, Emilie | Parant, Marc | Py, Jean-Sebastien | Rosin, Christophe | Cossu-Leguille, Carole
In this study, the presence of anthropogenic gadolinium (Gd) was evaluated in rivers, close to wastewater treatment plant outputs. Then, one site was selected for in situ experiments to assess the bioaccumulation of Gd in the digestive gland and in the gills of two bivalves (Dreissena rostriformis bugensis and Corbicula fluminea). For both organisms, the results suggested that the bioaccumulation of Gd can be observed when organisms are exposed in a geogenic and anthropogenic Gd mixture. In order to observe if Gd can bioaccumulate in tissues of bivalves when the ion is only present as the main anthropogenic speciation of Gd, i.e., Gd-contrast agents (Gd-CAs), the gadoteric acid was used for a laboratory experiment. In this case, the presence of Gd was clearly detected in a significant amount in the digestive glands of D. rostriformis bugensis and C. fluminea while low concentrations are measured in the gills. For the first time, these results clearly showed that Gd can bioaccumulate in bivalve tissues even when it is only present as Gd-CAs. Biochemical activities were measured in the digestive gland and in the gills of the bivalves to assess the effects of Gd-CA bioaccumulation. No significant variations were observed in the gills. Concerning the digestive gland, after 7 days of exposure at 10 μg L⁻¹ of Gd as Gd-CA speciation, GST activity in D. rostriformis bugensis and lipid hydroperoxide and mitochondrial electron transfer system in C. fluminea had increased. The results suggest an acclimation of the organisms to the presence of Gd-CAs in the medium within less than 21 days.
Show more [+] Less [-]