Refine search
Results 1-10 of 237
Quantification and exposure assessment of microplastics in Australian indoor house dust
2021
Soltani, Neda Sharifi | Taylor, Mark Patrick | Wilson, Scott Paton
Limited attention has been given to the presence of MPs in the atmospheric environment, particularly in indoor environments where people spend about 90% of their time. This study quantitatively assesses the prevalence, source and type of MPs in Australian homes with the goal of evaluating human health exposure potential. Thirty-two airborne indoor deposited dust samples were collected in glass Petri dishes from Sydney (Australia) homes, over a one-month period in 2019. Participants completed a questionnaire on their household characteristics. Samples were analysed using a stereomicroscope, a fluorescent microscope and micro-Fourier transform infrared (FTIR) spectroscopy for their colour, size, shape and composition. Inhalation and ingestion rates were modelled using US EPA exposure factors. Microplastic fibre deposition rates ranged from 22 to 6169 fibres/m²/day. Deposited dust comprised 99% fibres. The highest proportion of fibres (19%) were 200–400 μm in length. The majority were natural (42%); 18% were transformed natural-based fibres; and 39% were petrochemical based. A significant difference was observed between the deposition rate and the main floor covering (p-value <0.05). Polyethylene, polyester, polyamide, polyacrylic, and polystyrene fibres were found in higher abundance in homes with carpet as the main floor covering. Where carpet was absent, polyvinyl fibres were the most dominant petrochemical fibre type, indicating the role of flooring materials (e.g. wood varnishes) in determining MP composition. Vacuum cleaner use was significantly related to MP deposition rates (p-value <0.05). MP ingestion rates peaked at 6.1 mg/kg-Bw/year for ages 1–6, falling to a minimum of 0.5 mg/kg-Bw/year in >20 years age group. Mean inhaled MP weight and count was determined to be 0.2±0.07 mg/kg-Bw/year and 12891±4472 fibres/year. Greatest inhalation intake rates were for the <0.5-yr age group, at 0.31 mg/kg-Bw/year. The study data reveal that MPs are prevalent in Australian homes and that the greatest risk of exposure resides with young children. Notwithstanding the limited number of global studies and the different methods used to measure MPs, this study indicates Australian deposition and inhalation rates are at the lower end of the exposure spectrum.
Show more [+] Less [-]Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles
2020
Salam, Mohamed Abdel | AbuKhadra, Mostaf R. | Mohamed, Aya S.
Pieces of glass as solid wastes were recycled in the synthesis of highly order MCM-41 that decorated by green fabricated Co₃O₄ nanoparticles using the green extract of green tea leaves forming novel green nano-composite. The synthetic Co₃O₄/MCM-41 exhibit high surface area, low bandgap energy (1.63 eV), and typical spherical morphology decorated by Co₃O₄ nanoparticles. The composite was evaluated as green photocatalyst in effective oxidation of methyl parathion pesticide in the presence of a visible light source. The degradation results revealed complete removal of 50 mg/L and 100 mg/L after 60 min and 90 min, respectively using 0.25 of the catalyst at pH 8. The detection of the TOC in the treated methyl parathion solution gives strong indications about the formation of organic intermediate compounds during the oxidation steps. The main detected intermediate compound are C₆H₅OH(NO₂), C₆H₅OH, (CH₃O)₃P(S), C₆H₄(OH)₂, C₆H₃(OH)₃, C₆H₄(NH₂)OP(O)(OCH₃)₂, (CH₃O)₂P(O)OH, (CH₂)₂C(OH)OH(CHO)OC(O), and HO₂C(CH₂)₂C(O)CHO. The detected intermediate compounds converted into SO₄²⁻, PO₄³⁻, NO₃⁻, and CO₂ under the extensive photocatalytic of them over Co₃O₄/MCM-41. The oxidizing species trapping test verified the controlling of the methyl parathion degradation pathway by the hydroxyl radicals. Finally, the composite showed significant reusability properties and applied five times in the oxidation of methyl parathion with considerable degradation percentages.
Show more [+] Less [-]A global assessment of the relationship between anthropogenic debris on land and the seafloor
2020
Roman, Lauren | Hardesty, Britta Denise | Leonard, George H. | Pragnell-Raasch, Hannah | Mallos, Nicholas | Campbell, Ian | Wilcox, Chris
Pollution of coastal and marine environments by mismanaged anthropogenic debris is a global threat requiring complex, multilateral solutions and mitigation strategies. International efforts to catalogue and quantify the density, extent and nature of mismanaged waste have not yet assessed the heterogeneity of debris between nearby areas. Better understanding of how debris types and density can be used as a proxy between regions and between land and seafloor habitats at a global scale can aid in developing cost effective and representative debris monitoring systems. Using volunteer collected clean-up and survey data, we compared the proportion and density of both total debris and specific items across 19,428 coastal land and seafloor sites from International Coastal Cleanups and Dive Against Debris surveys, from 86 countries between 2011 and 2018. We show that although some items common on land are also common on the seafloor, there is an overall global mismatch between debris types and densities on land and the seafloor from nearby areas. Correlations in land/seafloor debris type/density occurred primarily for items which entangle and/or sink, including fishing line, plastic bags, glass and polyethylene terephthalate (PET) bottles. Minimal similarity between land and seafloor surveys occurs for items which float or degrade. We suggest that to accurately evaluate local debris density, land and seafloor surveys are required to gain a holistic understanding. When detailed information on debris type, relative concentration, and likely source and transport are assessed, more cost effective and efficient policy interventions can be designed and implemented from local through to global scales.
Show more [+] Less [-]Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media
2020
Lyu, Xueyan | Liu, Xing | Sun, Yuanyuan | Gao, Bin | Ji, Rong | Wu, Jichun | Xue, Yuqun
Understanding the subsurface transport of perfluorooctanoic acid (PFOA) is of considerable interest for evaluating its potential risks to humans and ecosystems. In this study, packed-column experiments were conducted to examine the influence of surface roughness on PFOA transport in unsaturated glass beads, quartz sand and limestone porous media. Results showed decreasing moisture content significantly increased the air-water interfacial adsorption of PFOA and led to greater retardation in all three types of porous media. Particularly, rougher surface (limestone > quartz sand > glass beads) and smaller grain size (i.e. a larger solid specific surface area, SSSA) significantly enhanced PFOA retardation under unsaturated conditions. These results were further supported by bubble column experiments and SSSA analysis of porous media, which demonstrate that except for the factors affecting PFOA transport in solid-water interface (e.g. surface charge and chemical heterogeneity), the greater retardation of PFOA during transport is attributed to the larger air-water interfacial areas associated with rougher surface and smaller grain size and hence greater interfacial adsorption of PFOA. Our results indicated the importance of surface roughness on the retention and transport of PFOA in the unsaturated zone.
Show more [+] Less [-]Assemblage of encrusting organisms on floating anthropogenic debris along the northern coast of the Persian Gulf
2019
Shabani, Fatemeh | Nasrolahi, Ali | Thiel, Martin
Global concern about floating marine debris and its fundamental role in shaping coastal biodiversity is growing, yet there is very little knowledge about debris-associated rafting communities in many areas of the world's oceans. In the present study, we examined the encrusting assemblage on different types of stranded debris (wood, plastic, glass, and metal cans) along the Iranian coast of the Persian Gulf. In total, 21 taxa were identified on 132 items. The average frequency of occurrence (±SE) across all sites and stranded debris showed that the barnacle Amphibalanus amphitrite (68.9 ± 1.1%), the oyster Saccostrea cucullata (40.9 ± 0.7%), the polychaete Spirobranchus kraussii (27.3 ± 0.5%), green algae (22 ± 0.5%) and the coral Paracyathus stokesii (14.4 ± 0.7%) occurred most frequently. Relative substratum coverage was highest for A. amphitrite (44.3 ± 2.7%), followed by green algae (14.4 ± 1.5%), Spirobranchus kraussii (9.3 ± 1.3%), Saccostrea cucullata (7.6 ± 1.3%) and the barnacle Microeuraphia permitini (5.8 ± 0.9%). Despite the significant difference in coverage of rafting species on plastic items among different sites, there was no clear and consistent trend of species richness and coverage from the eastern (Strait of Hormuz) to the western part of the Persian Gulf. Some rafting species (bryozoans and likely barnacles) were found to be non-indigenous species in the area. As floating marine debris can transport non-indigenous species and increase the risk of bio-invasions to this already naturally- and anthropogenically-stressed water body, comprehensive monitoring efforts should be made to elucidate the vectors and arrival of new invasive species to the region.
Show more [+] Less [-]Plastic Pirates sample litter at rivers in Germany – Riverside litter and litter sources estimated by schoolchildren
2019
Kiessling, Tim | Knickmeier, Katrin | Kruse, Katrin | Brennecke, Dennis | Nauendorf, Alice | Thiel, Martin
Rivers are an important source of marine anthropogenic litter, but the particular origins of riverine litter itself have not been well established. Here we used a citizen science approach where schoolchildren examined litter at riversides and identified possible sources at over 250 sampling spots along large and small rivers in Germany, during autumn 2016 and spring 2017. Litter densities have an overall median of 0.14, interquartile range 0–0.57 items m−2 and an overall average (±standard deviation) of 0.54 ± 1.20 litter items m−2. Litter quantities differed only little by sampling year. The principal litter types found were plastics and cigarette butts (31% and 20%, respectively), followed by glass, paper, and metal items, indicating recreational visitors as the principal litter source. At many sites (85%), accumulations of litter, consisting principally of cigarettes and food packaging, have been found. At almost all sampling sites (89%), litter potentially hazardous to human health has been observed, including broken glass, sharp metal objects, used personal hygiene articles and items containing chemicals. In the search for litter sources, the schoolchildren identified mainly people who use the rivers as recreational areas (in contrast to residents living in the vicinity, illegal dumping, or the river itself depositing litter from upstream sources). These results indicate the urgent need for better education and policy measures in order to protect riparian environments and reduce input of riverine litter to the marine environment.
Show more [+] Less [-]Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler
2018
Fu, Biao | Liu, Guijian | Sun, Mei | Hower, James C. | Mian, Md Manik | Wu, Dun | Wang, Ruwei | Hu, Guangqing
Emission of hazardous trace elements (HTEs) from energy production is receiving much attention due to concerns about the toxicity to the ecosystem and human health. This study presented new field measurement data on the HTEs partitioning behavior and size-segregated elemental compositions of gaseous particular matter (PM) generated from a commercial circulating fluidized bed (CFB) power plant. Mineralogical and morphological characteristics of combustion ash and PM2.5 (particle diameter less than 2.5 μm) were determined by X-ray diffractometer (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). Functional groups alteration during CFB combustion was characterized by Fourier transform infrared spectroscopy (FTIR). The presence of aliphatic hydrogen at 2910 cm−1 and 2847 cm−1 in the PM2.5 suggested that the aliphatic carbon-rich volatiles were absorbed on the fine particles with large surface area. Fine fly ash (PM2.5) occurred as irregular glass particles or/and as unburned carbon. The typical irregular particles were mainly composed of Al-Si-Ca or Al-Si-Fe phases. The enrichment behavior of HTEs was determined for the airborne size-segregated particular matter. Elemental occurrences, combustion temperature, unburnt carbon, and limestone additives during CFB combustion were critical in the transformation behavior of HTEs. The total potentially mobile pollutants that exit the CFB power plant every year were estimated as follows: 0.22 tons of Cr, 0.12 tons of Co, 0.73 tons of Ni, 0.04 tons of As, 0.07 tons of Se, 3.95 kg of Cd, and 3.34 kg of Sb.
Show more [+] Less [-]Waste water treatment plants as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air
2011
Weinberg, Ingo | Dreyer, Annekatrin | Ebinghaus, Ralf
To investigate waste water treatment plants (WWTPs) as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two WWTPs and two reference sites using high volume samplers. Contaminants were accumulated on glass fiber filters and PUF/XAD-2/PUF cartridges, extracted compound-dependent by MTBE/acetone, methanol, or hexane/acetone and detected by GC-MS or HPLC-MS/MS. Total (gas+particle phase) concentrations ranged from 97 to 1004pgm⁻³ (neutral PFCs), <MQL to 13pgm⁻³ (ionic PFCs), 5781 to 482,163pgm⁻³ (musk fragrances) and <1 to 27pgm⁻³ (PBDEs) and were usually higher at WWTPs than at corresponding reference sites, revealing that WWTPs can be regarded as sources of musk fragrances, PFCs and probably PBDEs to the atmosphere. Different concentrations at the two WWTPs indicated an influence of WWTP size or waste water origin on emitted contaminant amounts.
Show more [+] Less [-]Urgency of technology and equipment upgrades in e-waste dismantling base: Pollution identification and emission reduction
2022
Wang, Rui | Zhang, Qi | Zhan, Lu | Hsu, Chen-Min
Recycling of electronic waste (e-waste) and inevitable pollution under current technology have always been a concern of people. Generation and release of pollutants in the recycling process of e-waste are closely related to processing technology and equipment. In this paper, the pollution characteristics of different functional areas and critical processing units in formal e-waste dismantling base have been studied systematically and comprehensively. The results showed that the overall pollutants concentration in crushing workshop and cathode ray tube (CRT) monitor disposing workshop are much higher than other functional areas. Screen-cone glass separation for CRT monitor was the processing unit with the greatest exposure risk and the hazard index (HI) of Pb was 4.60. Pollutant emission factor of the main processing units was calculated and the waste printed circuit board (WPCB) crushing was the most polluted unit. Appropriate improvements in technology and equipment can effectively reduce the generation and release of pollutants. Some reasonable prospects about intelligent equipment and special technologies were proposed for e-waste disposal. All the results provided theoretical and data support for pollution control and technology upgrade of the formal e-waste dismantling base.
Show more [+] Less [-]Sustainable functionalized metal-organic framework NH2-MIL-101(Al) for CO2 separation under cryogenic conditions
2021
Bābar, Muḥammad | Mubashir, Muhammad | Mukhtar, Ahmad | Saqib, Sidra | Ullah, Sami | Bustam, Mohamad Azmi | Show, Pau Loke
In this study, a sustainable NH₂-MIL-101(Al) is synthesized and subjected to characterization for cryogenic CO₂ adsorption, isotherms, and thermodynamic study. The morphology revealed a highly porous surface. The XRD showed that NH₂-MIL-101(Al) was crystalline. The NH₂-MIL-101(Al) decomposes at a temperature (>500 °C) indicating excellent thermal stability. The BET investigation revealed the specific surface area of 2530 m²/g and the pore volume of 1.32 cm³/g. The CO₂ adsorption capacity was found to be 9.55 wt% to 2.31 wt% within the investigated temperature range. The isotherms revealed the availability of adsorption sites with favorable adsorption at lower temperatures indicating the thermodynamically controlled process. The thermodynamics showed that the process is non-spontaneous, endothermic, with fewer disorders, chemisorption. Finally, the breakthrough time of NH₂-MIL-101(Al) is 31.25% more than spherical glass beads. The CO₂ captured by the particles was 2.29 kg m⁻³. The CO₂ capture using glass packing was 121% less than NH₂-MIL-101(Al) under similar conditions of temperature and pressure.
Show more [+] Less [-]