Refine search
Results 1-10 of 96
Nutrient enrichment and herbivory alter carbon balance in temperate seagrass communities Full text
2024
Jiménez Ramos, Rocío | Brun Murillo, Fernando Guillermo | Vergara Oñate, Juan José | Hernández Carrero, Ignacio | Pérez Lloréns, José Lucas | Egea Tinoco, Luis Gonzalo | Biología
Large nutrient levels and herbivory stress, particularly when acting together, drive a variety of responses in seagrass communities that ultimately may weaken their carbon balance. An in situ three-months experiment was carried out in two contrasting seasons to address the effects of two levels of nutrient load and three levels of artificial clipping on Cymodocea nodosa plants. Nutrient enrichment shifted the community from autotrophic to heterotrophic and reduced DOC fluxes in winter, whereas enhanced community carbon metabolism and DOC fluxes in summer. Herbivory stress decreased the net primary production in both seasons, whereas net DOC release increased in winter but decreased in summer. A reduction of seagrass food-web structure was observed under both disturbances evidencing impacts on the seagrass ecosystems services by altering the carbon transfer process and the loss of superficial OC, which may finally weaken the blue carbon storage capacity of these communities.
Show more [+] Less [-]Nitrogen budgets of contrasting crop-livestock systems in China Full text
2021
Jin, Xinpeng | Zhang, Nannan | Zhao, Zhanqing | Bai, Zhaohai | Ma, Lin
The crop-livestock system is responsible for a large proportion of global reactive nitrogen (Nr) losses, especially from China. There are diverse livestock systems with contrasting differences in feed, livestock and manure management. However, it is not yet well understood which factors greatly impact on the nitrogen (N) budgets and losses of each system. In this study, we systematically evaluated the N budgets of the crop-livestock production system from 1980 to 2050 in China by identifying the differences of 20 distinct livestock systems. During 1980 to 2010, the total N flow through the crop-livestock system increased from 21.4 to 49.7 Tg, with large variations in different input/output pathways, due to the strong livestock transitions of production towards to a monogastric and landless industrial system. Different systems contributed differently to the total N budgets in 2010. For example, the landless industrial system contributed 67% of livestock product N output, but accounted for 80% of total mineral N fertilizer use and feed N imports by the whole crop-livestock system. The mixed system had the highest rate of N use efficiency at system level due to high dependence on recycled N. N losses were diversely distributed by different systems, with the mixed ruminant system responsible for the majority of NH₃–N emission in livestock production, and the grazing ruminant system dominant in NO₃–N losses in feed production. The total N entering the crop-livestock system is estimated to be 53.9 Tg with total N losses of 41.3 Tg in 2050 under a business-as-usual scenario. However, this amount could be significantly decreased through combined measures that indicate a considerable potential for future improvements. Overall, our results provide new insights into N use and the management of livestock production.
Show more [+] Less [-]Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health Full text
2019
Weber, R. | Bell, L. | Watson, A. | Petrlik, J. | Paun, M.C. | Vijgen, J.
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination.In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans.Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. ‘Safe’ soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk).For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist.There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Show more [+] Less [-]Associations between environmental pollutants and larval amphibians in wetlands contaminated by energy-related brines are potentially mediated by feeding traits Full text
2019
Smalling, Kelly L. | Anderson, Chauncey W. | Honeycutt, R Ken | Cozzarelli, Isabelle M. | Preston, Todd | Hossack, Blake R.
Energy production in the Williston Basin, located in the Prairie Pothole Region of central North America, has increased rapidly over the last several decades. Advances in recycling and disposal practices of saline wastewaters (brines) co-produced during energy production have reduced ecological risks, but spills still occur often and legacy practices of releasing brines into the environment caused persistent salinization in many areas. Aside from sodium and chloride, these brines contain elevated concentrations of metals and metalloids (lead, selenium, strontium, antimony and vanadium), ammonium, volatile organic compounds, hydrocarbons, and radionuclides. Amphibians are especially sensitive to chloride and some metals, increasing potential effects in wetlands contaminated by brines. We collected bed sediment and larval amphibians (Ambystoma mavortium, Lithobates pipiens and Pseudacris maculata) from wetlands in Montana and North Dakota representing a range of brine contamination history and severity to determine if contamination was associated with metal concentrations in sediments and if metal accumulation in tissues varied by species. In wetland sediments, brine contamination was positively associated with the concentrations of sodium and strontium, both known to occur in oil and gas wastewater, but negatively correlated with mercury. In amphibian tissues, selenium and vanadium were associated with brine contamination. Metal tissue concentrations were higher in tadpoles that graze compared to predatory salamanders; this suggests frequent contact with the sediments could lead to greater ingestion of metal-laden materials. Although many of these metals may not be directly linked with energy development, the potential additive or synergistic effects of exposure along with elevated chloride from brines could have important consequences for aquatic organisms. To effectively manage amphibian populations in wetlands contaminated by saline wastewaters we need a better understanding of how life history traits, species-specific susceptibilities and the physical-chemical properties of metals co-occurring in wetland sediments interact with other stressors like chloride and wetland drying.
Show more [+] Less [-]Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil Full text
2018
Hockmann, Kerstin | Tandy, Susan | Studer, Björn | Evangelou, Michael W.H. | Schulin, R. (Rainer)
Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L−1 to ∼10 μg L−1, which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g−1. Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g−1 Pb, 150 μg g−1 Zn, 15–35 μg g−1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study.
Show more [+] Less [-]Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland Full text
2018
Mitchell, R. J. (Ruth J.) | Hewison, Richard L. | Fielding, Debbie A. | Fisher, Julia M. | Gilbert, Diana J. | Hurskainen, Sonja | Pakeman, R. J. (Robin J.) | Potts, Jacqueline M. | Riach, David
The predicted long lag time between a decrease in atmospheric deposition and a measured response in vegetation has generally excluded the investigation of vegetation recovery from the impacts of atmospheric deposition. However, policy-makers require such evidence to assess whether policy decisions to reduce emissions will have a positive impact on habitats. Here we have shown that 40 years after the peak of SOₓ emissions, decreases in SOₓ are related to significant changes in species richness and cover in Scottish Calcareous, Mestrophic, Nardus and Wet grasslands. Using a survey of vegetation plots across Scotland, first carried out between 1958 and 1987 and resurveyed between 2012 and 2014, we test whether temporal changes in species richness and cover of bryophytes, Cyperaceae, forbs, Poaceae, and Juncaceae can be explained by changes in sulphur and nitrogen deposition, climate and/or grazing intensity, and whether these patterns differ between six grassland habitats: Acid, Calcareous, Lolium, Nardus, Mesotrophic and Wet grasslands. The results indicate that Calcareous, Mesotrophic, Nardus and Wet grasslands in Scotland are starting to recover from the UK peak of SOₓ deposition in the 1970's. A decline in the cover of grasses, an increase in cover of bryophytes and forbs and the development of a more diverse sward (a reversal of the impacts of increased SOₓ) was related to decreased SOₓ deposition. However there was no evidence of a recovery from SOₓ deposition in the Acid or Lolium grasslands. Despite a decline in NOₓ deposition between the two surveys we found no evidence of a reversal of the impacts of increased N deposition. The climate also changed significantly between the two surveys, becoming warmer and wetter. This change in climate was related to significant changes in both the cover and species richness of bryophytes, Cyperaceae, forbs, Poaceae and Juncaceae but the changes differed between habitats.
Show more [+] Less [-]Effects of local-scale decontamination in a secondary forest contaminated after the Fukushima nuclear power plant accident Full text
2017
Ayabe, Yoshiko | Hijii, Naoki | Takenaka, Chisato
We investigated whether local-scale decontamination (removal of the litter layer, superficial soil layer, and understory) in a secondary forest contaminated by the Fukushima nuclear power plant accident reduced 137Cs contamination of the soil and litter. We also measured 137Cs concentrations in plants and in the web-building spider Nephila clavata (Nephilidae: Arachnida), as an indicator species, to examine 137Cs contamination in arthropods. One month after decontamination, the total 137Cs contamination (soil + litter) was reduced by 20% (100 kBq·m−2) relative to that in an adjacent untreated (i.e., contaminated) area, which was however not statistically significant. Four months after decontamination, 137Cs in the decontaminated area had increased to a level similar to those in the untreated area, and the air radiation dose in the decontaminated area was about 2.1 μSv·h−1, significantly higher than that in the untreated area (1.9 μSv·h−1). This may have been attributed to a torrential rain event. Although no statistically significant reduction was observed, most spiders had a lower 137Cs contamination than that before the decontamination. This implied that the decontamination may have reduced 137Cs transfer from soil via litter to N. clavata through the detrital food chains, but may not have reduced the amount of 137Cs transfer through grazing food chains because the concentration of 137Cs in living tree leaves was not reduced by the decontamination. In autumn, about 2 kBq·m−2 of 137Cs was supplied from foliage to the ground by litterfall. The results suggested that removal of the litter and superficial soil layers in a contaminated forest may be ineffective. The present study suggests that the local-scale decontamination in a secondary forest had no effect on the reduction of 137Cs contamination in the treated area.
Show more [+] Less [-]Free and conjugated estrogens detections in drainage tiles and wells beneath fields receiving swine manure slurry Full text
2020
Casey, Francis X.M. | Hakk, Heldur | DeSutter, Thomas M.
Although livestock manure, such as from swine (Sus scrofa domestica), have high capacity to introduce endocrine-disrupting free estrogens into the environment, the frequency of estrogen detections from reconnaissance studies suggest that these compounds are ubiquitous in the environment, perhaps resulting from historic manure inputs (e.g. cattle grazing residues, undocumented historic manure applications) or uncontrolled natural sources. Compared to free estrogens, conjugates of estrogens are innocuous but have greater mobility in the environment. Estrogen conjugates can also hydrolyze to re-form the potent free estrogens. The objective of this study was to identify the transport of free and conjugated estrogens to subsurface tile drains and groundwater beneath fields treated with swine manure slurry. Three field treatments were established, two receiving swine lagoon manure slurry and one with none. Manure slurry was injected into soils at a shallow depth (∼8 cm) and water samples from tile drains and shallow wells were sampled periodically for three years. Glucuronide and sulfate conjugates of 17β-estradiol (E2) and estrone (E1) were the only estrogen compounds detected in the tile drains (total detects = 31; 5% detection frequency; conc. range = 3.9–23.1 ng L(−1)), indicating the important role conjugates played in the mobility of estrogens. Free estrogens and estrogen conjugates were more frequently detected in the wells compared to the tile drains (total detects = 70; 11% detection frequency; conc. range = 4.0–1.6 × 103 ng L(−1)). No correlations were found between estrogen compound detections and dissolved or colloidal organic carbon (OC) fractions or other water quality parameters. Estrogenic compounds were detected beneath both manure treated and non-treated plots; furthermore, the total potential estrogenic equivalents (i.e. estrogenicity of hydrolyzed conjugates + free estrogens) were similar between treated and non-treated plots.
Show more [+] Less [-]Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil Full text
2018
Excess exposure to fluoride causes substantive health burden in humans and livestock globally. However, few studies have assessed the distribution and controls of variability of ambient background concentrations of fluoride in soil. Ambient background concentrations of fluoride in soil were collated for Greater Melbourne, Greater Geelong, Ballarat and Mitchell in Victoria, Australia (n = 1005). Correlation analysis and machine learning techniques were used to identify environmental and anthropogenic influences of fluoride variability in soil. Sub-soils (>0.3 m deep), in some areas overlying siltstone and sandstone, and to a lesser extent, overlying basalt, were naturally enriched with fluoride at concentrations above ecological thresholds for grazing animals. Soil fluoride enrichment was predominantly influenced by parent material (mineralogy), precipitation (illuviation), leaching during palaeoclimates and marine inputs. Industrial air pollution did not significantly influence ambient background concentrations of fluoride at a regional scale. However, agricultural practices (potentially the use of phosphate fertilisers) were indicated to have resulted in added fluoride to surface soils overlying sediments. Geospatial variables alone were not sufficient to accurately model ambient background soil fluoride concentrations. A multiple regression model based on soil chemistry and parent material was shown to accurately predict ambient background fluoride concentrations in soils and support assessment of fluoride enrichment in the environment.
Show more [+] Less [-]Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil Full text
2016
Mollon, L.C. | Norton, G.J. | Trakal, L. | Moreno-Jimenez, E. | Elouali, F.Z. | Hough, R.L. | Beesley, L.
Heavy metal(loid) rich ash (≤10,000 mg kg−1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1–3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash.The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits.The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain.
Show more [+] Less [-]