Refine search
Results 1-10 of 47
Source apportionment of perfluoroalkyl substances in Great Lakes fish
2021
Lin, Yan | Capozzi, Staci L. | Lin, Li | Rodenburg, Lisa A.
Due to the complex sources and fate of perfluoroalkyl substance (PFAS), their source apportionment in the environment remains a challenge. A data set of 11 straight-chain PFAS in 139 samples of fish in the Great Lakes was analyzed using positive matrix factorization (PMF) to investigate their primary sources, whose spatial variations were examined against the surrounding environmental factors. PMF analysis produced five fingerprints. Factor 1 (72% of Σ₁₁PFAS, dominated by PFOS) probably represented emissions from primary sources (such as consumer products) and secondary sources (precursors), and increased in average abundance from west to east across the Great Lakes. Factor 2 (13% of Σ₁₁PFAS) and factor 3 (7% of Σ₁₁PFAS), highly loaded with long-chain PFAS and PFNA, respectively, were thought to represent PVDF manufacture or processing in metal plating. They showed higher contributions in sparsely populated Lakes Superior and Huron. Factor 4 (5% of Σ₁₁PFAS, highly loaded with PFOS and PFHxS) presented hot spots near current and former air force bases, suggesting it was related to aqueous film-forming foams (AFFFs). Factor 5 (4% of Σ₁₁PFAS) contained primarily PFOS and PFOSA, which may imply metabolism of precursors (PFOSA) to PFOS in vivo. Unexpectedly, the spatial trends of the five sources all showed abnormally low values near the more urbanized Chicago and Milwaukee in Lake Michigan, which may be due to their unique wastewater and stormwater infrastructure or may arise from atmospheric transport of precursors. Our study indicated that PMF was an effective tool to identify sources of PFAS in fish despite absorption, distribution, metabolism, and excretion (ADME) processes which might alter fingerprints in fish relative to their surrounding environment.
Show more [+] Less [-]Halogenated organic contaminants of concern in urban-influenced waters of Lake Ontario, Canada: Passive sampling with targeted and non-targeted screening
2020
Zhang, Xianming | Robson, Matthew | Jobst, Karl | Pena-Abaurrea, Miren | Muscalu, Alina | Chaudhuri, Sri | Marvin, Chris | Brindle, Ian D. | Reiner, Eric J. | Helm, Paul
Passive samplers are useful tools for monitoring hydrophobic, persistent, and potentially bioaccumulative contaminants in the environment. In this study, low density polyethylene passive samplers were deployed in urban-influenced and background nearshore freshwaters of northwestern Lake Ontario and analyzed for a broad range of both legacy halogenated organic contaminants (HOCs) and halogenated flame retardants (HFRs). Non-targeted analysis was conducted for screening additional halogenated substances. For most compounds, concentrations were greatest in the industrialized Hamilton Harbour and more generally at sites that have stronger influences of wastewater effluent discharges and stormwater run-off through rivers and creeks. Polychlorinated biphenyls (PCBs) remain the dominant class of HOCs in water, with dissolved-phase concentrations ranging from 10 to 4100 pg/L (ΣPCBs), followed by polybrominated diphenylethers (ΣPBDEs; 14–960 pg/L) and the organochlorine pesticides (OCPs; 22–290 pg/L). Several non-PBDE brominated flame retardants (nBFRs) and chlorinated Dechlorane-related compounds were detected, with hexabromocyclododecanes (ΣHBCDD; sum of 3 diastereoisomers) the most abundant (1.0–21 pg/L). Non-targeted screening of samples by high resolution mass spectrometry using Kendrick mass defect plots for data analysis indicated that several other halogenated compounds were present in waters at relatively high abundances compared to the flame retardants, based on semi-quantitative estimates. These included methyl-triclosan, four halogenated anisoles (2,4,6-tribromoanisole, dimethyl-trichloroanisole, pentachloroanisole, and pentachlorothioanisole), and pentachloro-aniline. Dissolved-phase methyl-triclosan was estimated to contribute up to approximately 40% of the summed target HOC concentrations. Polyethylene passive samplers provided an excellent medium for both non-targeted screening of HOCs not currently included in monitoring programs and tracking brominated and chlorinated chemicals slated for reductions in uses and emissions through international (Stockholm Convention) and binational (Great Lakes) agreements.
Show more [+] Less [-]Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers
2019
Montiel-León, Juan Manuel | Muñoz, Gabriel | Vo Duy, Sung | Do, Dat Tien | Vaudreuil, Marc-Antoine | Goeury, Ken | Guillemette, François | Amyot, Marc | Sauvé, Sébastien
The occurrence and spatial distribution of selected pesticides were investigated along a 200-km reach of the St. Lawrence River (SLR) and tributaries in Quebec, Canada. Surface water samples (n = 68) were collected in the summer 2017 and analyzed for glyphosate, atrazine (ATZ), 8 systemic insecticides (acetamiprid, clothianidin, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam) and some metabolites. Overall, 99% of the surface water samples were positive to at least one of the targeted pesticides. The most recurrent compounds were glyphosate (detection frequency: 84%), ATZ (82%), thiamethoxam (59%), desethylatrazine (DEA: 47%), and clothianidin (46%). Glyphosate displayed variable levels (4–3,000 ng L−1), with higher concentrations in south tributaries (e.g., Nicolet and Yamaska). In positive samples, the sum of ATZ and DEA varied between 5 and 860 ng L−1, and the sum of 6 priority neonicotinoids between 1.5 and 115 ng L−1. From Repentigny to the Sorel Islands, the spatial distribution of pesticides within the St. Lawrence River was governed by the different upstream sources (i.e., Great Lakes vs. Ottawa River) due to the limited mixing of the different water masses. Cross-sectional patterns revealed higher concentrations of glyphosate and neonicotinoids in the north portions of transects, while the middle and south portions showed higher levels of atrazine. In Lake St. Pierre and further downstream, cross-sections revealed higher levels of the targeted pesticides near the southern portions of the SLR. This may be due to the higher contributions from south shore tributaries impacted by major agricultural areas, compared to north shore tributaries with forest land and less cropland use. Surface water samples were compliant with guidelines for the protection of aquatic life (chronic effects) for glyphosate and atrazine. However, 31% of the samples were found to surpass the guideline value of 8.3 ng L−1 for the sum of six priority neonicotinoids.
Show more [+] Less [-]Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes
2018
Jorgenson, Zachary G. | Thomas, Linnea M. | Elliott, Sarah M. | Cavallin, Jenna E. | Randolph, Eric C. | Choy, Steven J. | Alvarez, David A. | Banda, Jo A. | Gefell, Daniel J. | Lee, K. E. (Kathy E.) | Furlong, Edward T. | Schoenfuss, Heiko L.
The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin.
Show more [+] Less [-]Concentrations and trophic magnification of cyclic siloxanes in aquatic biota from the Western Basin of Lake Erie, Canada
2014
McGoldrick, Daryl J. | Chan, Cecilia | Drouillard, Ken G. | Keir, Michael J. | Clark, Mandi G. | Backus, Sean M.
We examine the concentrations and food web biomagnification of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) using aquatic biota collected from Lake Erie. Concentrations of cVMS in biota were within the range reported for other studies of cVMS in aquatic biota. Trophic magnification factors (TMF) were assessed in various food web configurations to investigate the effects of food web structure. TMF estimates were highly dependent on the inclusion/exclusion of the organisms occupying the highest and lowest trophic levels and were >1 for D4 and D5, indicating biomagnification, in only 1 of the 5 food web configurations investigated and were <1 in the remaining 4 food web configurations. TMF estimates for PCB180 were also dependant on food web configuration, but did not correspond with those obtained for cVMS materials. These differences may be attributed to environmental exposure and/or lipid partitioning differences between PCB180 and cVMS.
Show more [+] Less [-]Atmospheric concentrations and potential sources of PCBs, PBDEs, and pesticides to Acadia National Park
2013
Sofuoglu, Sait C. | Sofuoglu, Aysun | Holsen, Thomas M. | Alexander, Colleen M. | Pagano, James J.
This study assessed concentrations and investigated potential source regions for PCBs, PBDEs, and organochlorine pesticides in Acadia National Park, Maine, USA. Back-trajectories and potential source contribution function (PSCF) values were used to map potential source areas for total-PCBs, BDE-47, and 10 organochlorine pesticides. The constructed PSCF maps showed that ANP receives high pollutant concentrations in air masses that travel along four main pathways: (1) from the SW along the eastern Atlantic seaboard, (2) from the WSW over St. Louis, and Columbus regions, (3) from the west over Chicago, and Toronto regions, and (4) from WNW to NNW over the Great Lakes, and Quebec regions. Transport of all studied pollutants were equally distributed between the first three pathways, with only minor contributions from the last pathway. This study concludes that the high-pollutant concentrations arriving at ANP do not exclusively originate from the major urban centers along the eastern Atlantic seaboard.
Show more [+] Less [-]Concentrations and source identification of PAHs, alkyl-PAHs and other organic contaminants in sediments from a contaminated harbor in the Laurentian Great Lakes
2021
Buell, Mary-Claire | Johannessen, Cassandra | Drouillard, Ken | Metcalfe, Chris
As a result of historical industrial activity, the sediments in the inner harbor of Owen Sound Bay in the northeastern part of Lake Huron in Ontario, Canada are contaminated with organic compounds. The present study showed that the concentrations of Ʃ PAH₁₆₋EPA in all sediments in the inner harbor were above the sediment quality guidelines for the province of Ontario, Canada, with mean Ʃ PAH₁₆₋EPA concentrations at the most contaminated site of 46,000 μg/kg dry weight. The concentrations of polychlorinated biphenyls, brominated diphenyl ethers, and organochlorine compounds were all below sediment quality guidelines. The patterns of PAH and alkyl-PAH compounds in sediment cores indicated that contamination is from mixed sources, with a strong indication of pyrogenic contamination from industries that used to operate in the area, including a coal gasification plant. Other areas of the bay are impacted by petrogenic contamination, potentially from spills of fuel. The even distribution of PAH and alkyl-PAH compounds throughout core profiles at depths up to 25 cm indicates that this is a dynamic system and contaminated sediments are not being covered by deposition of less contaminated sediments. This study illustrates the value of determining the patterns of both PAH and alkyl-PAH compounds in sediments for regulatory purposes and also for forensic source tracking.
Show more [+] Less [-]Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria
2020
Egessa, Robert | Nankabirwa, Angela | Basooma, Rose | Nabwire, Racheal
Plastic pollution has been reported in sediment, surface water and biota of freshwater systems especially in Europe, North and South America, and Asia with limited studies focussing on African great lakes. This study therefore investigated the occurrence, abundance and distribution of micro-, meso- and macro-plastic debris along shores and sediment of northern Lake Victoria. The abundance of micro-, meso- and macro-plastics measured as particles/kg dry sediment were in range of 0–1102, 0–218 and 0–100 respectively in shoreline sediment and 0–108, 0–33 and 0–77 respectively in lake sediment. The mean abundance of micro-, meso- and macro-plastic debris at fish landing beaches (75.2 ± 50.0, 16.7 ± 8.1 and 18.1 ± 4.6 respectively) were higher than what was recorded at recreational beaches (1.5 ± 0.6, 3.1 ± 3.1 and 3.8 ± 3.8 respectively). Similarly, mean abundance of micro-, meso- and macro-plastic debris in lake sediment were higher in areas of fish landing beaches (9.5 ± 2.6, 2.1 ± 1.5 and 7.7 ± 4.5 respectively) than what was recorded in areas of recreational beaches (0.7 ± 0.7, 0.2 ± 0.1, and 0 ± 0 respectively). Films, filaments, fragments, foam and pellets were the plastic types, with the shoreline sediment dominated by films (>54%) while lake sediment was dominated by filaments (>55%), across size groups (micro-, meso- and macro-plastics). Spearman’s rank correlation indicated strong and significant correlation between abundance of micro- and meso-plastics for total plastic, film plastic and fragment plastic in shoreline sediment. Significant correlation between macroplastics in shoreline sediment and microplastics in lake sediment for total plastics was observed. The FTIR analysis revealed that polyethylene, polypropylene, Polyethylene Terephthalate, Polyamide (nylon), and polyvinyl chloride were the major polymers. These results demonstrated that fish landing beaches along Lake Victoria are hotspot areas for plastic pollution of the lake and should therefore be targeted for management of plastic pollution of Lake Victoria.
Show more [+] Less [-]Trends of polychlorinated dioxins, polychlorinated furans, and dioxin-like polychlorinated biphenyls in Chinook and Coho salmonid eggs from a Great Lakes tributary
2019
Garner, Andrew J. | Pagano, James J.
Eggs from mature Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) salmon were collected between 2004 and 2014 from the Salmon River fish hatchery in Altmar, New York. The egg samples were analyzed for seventeen polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), as well as four dioxin-like polychlorinated biphenyls (DL-PCBs) using USEPA methods 1613 and 1668. Salmonid eggs were chosen as a tissue of interest since salmon feed at all trophic levels of the food web as they grow, and spawn in a narrow range of ages providing consistent, representative, and temporal samples of contaminant exposure. First-order decay models indicate decreasing trends for all select contaminants in both species, expressed by a toxic equivalence (TEQ) half-life (t₁/₂) of 11 years in Chinook and Coho eggs. No significant statistical difference in contaminant elimination rates were noted between species. TEQ elimination rates for Coho and Chinook eggs were not significantly different (p > 0.05) when compared with published Lake Ontario whole-fish lake trout elimination rates. Our research demonstrates that salmonid eggs are an effective means to assess PCDD, PCDF, and DL-PCB exposures and long-term trends in the Great Lakes.
Show more [+] Less [-]Municipal wastewater effluent affects fish communities: A multi-year study involving two wastewater treatment plants
2019
McCallum, Erin S. | Nikel, Kirsten E. | Mehdi, Hossein | Du, Sherry N.N. | Bowman, Jennifer E. | Midwood, Jonathan D. | Kidd, Karen A. | Scott, Graham R. | Balshine, S. (Sigal)
Although effluent from municipal wastewater treatment plants (WWTPs) is a major stressor in receiving environments, relatively few studies have addressed how its discharge affects natural fish communities. Here, we assessed fish community composition over three years along a gradient of effluent exposure from two distinct WWTPs within an International Joint Commission Area of Concern on the Great Lakes (Hamilton Harbour, Canada). We found that fish communities changed with distance from both WWTPs, and were highly dissimilar between sites that were closest to and furthest from the wastewater outfall. Despite differences in the size and treatment technology of the WWTPs and receiving habitats downstream, we found that the sites nearest the outfalls had the highest fish abundances and contained a common set of signature fish species (i.e., round goby Neogobius melanostomus, green sunfish Lepomis cyanellus). Non-native and stress tolerant species were also more abundant near one of the studied WWTPs when compared to the reference site, and the number of young-of-the-year fish collected did not vary along the effluent exposure gradients. Overall, we show that fish are attracted to wastewater outfalls raising the possibility that these sites may act as an ecological trap.
Show more [+] Less [-]