Refine search
Results 1-9 of 9
Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata
2013
Nie, Xiang-Ping | Liu, Bin-Yang | Yu, Hui-Juan | Liu, Wei-Qiu | Yang, Yu-Feng
We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate–glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate–glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate–glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity.
Show more [+] Less [-]Impacts of horseradish peroxidase immobilization onto functionalized superparamagnetic iron oxide nanoparticles as a biocatalyst for dye degradation
2022
Keshta, Basem E. | Gemeay, Ali H. | Khamis, Abeer A.
To enhance the dye removal efficiency by natural enzyme, horseradish peroxidase (HRP) was immobilized onto amine-functionalized superparamagnetic iron oxide and used as a biocatalyst for the oxidative degradation of acid black-HC dye. The anchored enzyme was characterized by vibrating sample magnetometry, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, scanning electron microscopy, Brunauer–Emmett–Teller and Barrett–Joyner–Halenda methods, nitrogen adsorption–desorption measurements, Zeta potential, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The Michaelis constant values of free and immobilized HRP were determined to be 4.5 and 5 mM for hydrogen peroxide and 12.5 and 10 mM for guaiacol, respectively. Moreover, the maximum values of free and immobilized HRP were 2.4 and 2 U for H₂O₂, respectively, and 1.25 U for guaiacol. The immobilized enzyme was thermally stable up to 60°C, whereas the free peroxidase was stable only up to 40°C. In the catalytic experiment, the immobilized HRP exhibited superior catalytic activity compared with that of free HRP for the oxidative decolorization and removal of acid black-HC dye. The influence of experimental parameters such as the catalyst dosage, pH, H₂O₂ concentration, and temperature on the removal efficiency was investigated. The reaction followed second-order kinetics, and the thermodynamic activation parameters were determined.
Show more [+] Less [-]Salicylic acid pre-treatment modulates Pb2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots
2021
Kaura, Guraprīta | Ṛhengulā, Padmā Śarmā | Rathee, Sonia | Singh, Harminder Pal | Batish, Daizy Rani | Kohli, Ravinder Kumar
The current study investigated the putative role of salicylic acid (SA) in modulating Pb²⁺-induced DNA and oxidative damage in Allium cepa roots. Pb²⁺ exposure enhanced free radical generation and reduced DNA integrity and antioxidant machinery after 24 h; however, SA pre-treatment (for 24 h) ameliorated Pb²⁺ toxicity. Pb²⁺ exposure led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) accumulation and enhanced superoxide radical and hydroxyl radical levels. SA improved the efficiency of enzymatic antioxidants (ascorbate and guaiacol peroxidases [APX, GPX], superoxide dismutases [SOD], and catalases [CAT]) at 50-μM Pb²⁺ concentration. However, SA pre-treatment could not improve the efficiency of CAT and APX at 500 μM of Pb²⁺ treatment. Elevated levels of ascorbate and glutathione were observed in A. cepa roots pre-treated with SA and exposed to 50 μM Pb²⁺ treatment, except for oxidized glutathione. Nuclear membrane integrity test demonstrated the ameliorating effect of SA by reducing the number of dark blue–stained nuclei as compared to Pb²⁺ alone treatments. SA was successful in reducing DNA damage in cell exposed to higher concentration of Pb²⁺ (500 μM) as observed through comet assay. The study concludes that SA played a major role in enhancing defense mechanism and protecting against DNA damage by acclimatizing the plant to Pb²⁺-induced toxicity.
Show more [+] Less [-]Laccase and horseradish peroxidase for green treatment of phenolic micropollutants in real drinking water and wastewater
2021
Maryskova, Milena | Linhartova, Lucie | Novotný, Vít | Rysova, Miroslava | Cajthaml, Tomáš | Sevcu, Alena
Biologically active micropollutants that contain diverse phenolic/aromatic structures are regularly present in wastewater effluents and are even found in drinking water. Advanced green technologies utilizing immobilized laccase and/or peroxidase, which target these micropollutants directly, may provide a reasonable alternative to standard treatments. Nevertheless, the use of these enzymes is associated with several issues that may prevent their application, such as the low activity of laccase at neutral and basic pH or the necessity of hydrogen peroxide addition as a co-substrate for peroxidases. In this study, the activity of laccase from Trametes versicolor and horseradish peroxidase was evaluated across a range of commonly used substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and guaiacol). Moreover, conditions for their optimal performance were explored along with an assessment of whether these conditions accurately reflect the effectivity of both enzymes in the degradation of a mixture of bisphenol A, 17α-ethinylestradiol, triclosan, and diclofenac in tap drinking water and secondary wastewater effluent. Laccase and horseradish peroxidase showed optimal activity at strongly acidic pH if ABTS was used as a substrate. Correspondingly, the activities of both enzymes detected using ABTS in real waters were significantly enhanced by adding approximately 2.5% (v/v) of McIlvaine’s buffer. Degradation of a mixture of micropollutants in wastewater with 2.5% McIlvaine’s buffer (pH 7) resulted in a substantial decrease in estrogenic activity. Low degradation efficiency of micropollutants by laccase was observed in pure McIlvaine’s buffer of pH 3 and 7, compared with efficient degradation in tap water of pH 7.5 without buffer. This study clearly shows that enzyme activity needs to be evaluated on micropollutants in real waters as the assessment of optimal conditions based on commonly used substrates in pure buffer or deionized water can be misleading.
Show more [+] Less [-]Combined effects of vermicompost and vermicompost leachate on the early growth of Meloidogyne incognita stressed Withania somnifera (L.) Dunal
2022
Amandeep Kaur, | Arawindara Kaura, | Ohri, Puja
Roots of Withania somnifera, an important medicinal herb, are prone to the infection of Meloidogyne incognita (a root parasitic nematode). The infection lowers the quality and quantity of plant material and poses a challenge in crop cultivation and obtaining desirable yield. In the present study, in vitro inhibitory activity of vermicompost leachate (Vcom-L) was assessed against % hatch and survival of M. incognita in a 96 h assay. Then, Vcom-L was used as soil supplement in combination with vermicompost (Vcom) to evaluate their nematode inhibitory and stress alleviating effect in W. somnifera, in a pot experiment. Root galling intensity and growth performance of nematode-stressed W. somnifera raised from seeds pre-soaked in distilled water (DW), Vcom-L, vermicompost tea (Vcom-T) and different dilutions of Vcom-L were assessed. We observed 79% suppression of egg hatching and 89% juvenile (J2) mortality after 96 h compared to control, at 100% concentration of Vcom-L. Significant reduction in gall formation with increase in growth parameters of seedlings was observed after combined application of Vcom (60% or 100%) + Vcom-L and was evident as enhancement in seedling biomass and contents of chlorophyll and protein. However, proline, total phenolics and malondialdehyde (MDA) content declined significantly in these combinations compared to the control (0% Vcom). Activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidise (APX), guaiacol peroxidise (GPX) and glutathione reductase (GR) declined with Vcom as well as Vcom + Vcom-L and corresponded with decline in the accumulation of reactive oxygen species in leaves. Further, 1:5 and 1:10 dilutions of Vcom-L in combination with Vcom (60%) proved beneficial in mitigating the nematode-induced stress in W. somnifera. Present results showed the potential of Vcom and Vcom-L in standardised combination as an effective strategy in controlling the pathogenicity of M. incognita in medicinal plants such as W. somnifera.
Show more [+] Less [-]Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent
2010
Rocha-Santos, Teresa | Ferreira, Filipe | Silva, Lurdes | Freitas, Ana Cristina | Pereira, Ruth | Diniz, Mario | Castro, Luísa | Peres, Isabel | Duarte, Armando Costa
Background, aim and scope Pulp and paper mills generate a plethora of pollutants depending upon the type of pulping process. Efforts to mitigate the environmental impact of such effluents have been made by developing more effective biological treatment systems in terms of biochemical oxygen demand, chemical oxygen demand, colour and lignin content. This study is the first that reports an evaluation of the effects of a tertiary treatment by fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium and Rhizopus oryzae) on individual organic compounds of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (final effluent). Material and methods The tertiary treatment with P. sajor caju, T. versicolor and P. chrysosporium and R. oryzae was performed in batch reactors, which were inoculated with separate fungi species and monitored throughout the incubation period. Samples from effluent after secondary and after tertiary treatment with fungi were analysed for both absorbance and organic compounds. The samples were extracted for organic compounds using solid-phase extraction (SPE) and analysed by gas chromatography-mass spectrometry (GC/MS). The efficiencies of the SPE procedure was evaluated by recovery tests. Results A total of 38 compounds (carboxylic acids, fatty alcohols, phenolic compounds and sterols) were identified and quantified in the E. globulus bleached kraft pulp mill final effluent after secondary treatment. Recoveries from the extraction procedure were between 98.2% and 99.9%. The four fungi species showed an adequate capacity to remove organic compounds and colour. Tertiary treatment with R. oryzae was able to remove 99% of organic compounds and to reduce absorbance on 47% (270 nm) and 74% (465 nm). P. sajor caju, T. versicolor and P. chrysosporium were able to remove 97%, 92% and 99% of organic compounds, respectively, and reduce 18% (270 nm) to 77% (465 nm), 39% (270 nm) to 58% (465 nm) and 31% (270 nm) to 10% (465 nm) of absorbance, respectively. Discussion The wide variety of organic compounds found in the final effluent must be due to the degradation of E. globulus wood in pulp and paper mill. The concentrations of organic compounds in the final effluent of E. globulus bleached kraft pulp mill were in residual levels maybe due to the secondary treatment. The recovery tests showed the effectiveness of the extraction procedure, and no losses of analyte were suspected in the analytical determinations. Lignin derivatives such as vanilic acid, syringic acid, guaiacol, syringol and phloroglucinol were totally removed by R. oryzae, but the 47% absorbance reduction obtained at 270 nm suggests that these species were not able to complete degradation of lignin macromolecular compounds. Conclusions The organic compounds (carboxylic acids, fatty alcohols, phenolic compounds and sterols) were removed more efficiently by tertiary treatment with R. oryzae or P. chrysosporium, followed by P. sajor caju and T. versicolor. Regarding the removal of both colour and organic compounds, the tertiary treatment with R. oryzae was the most efficient. Recommendations and perspectives In order to reduce the deleterious impacts of paper mill effluents, efforts have been made to develop more effective advanced tertiary treatments. This study may serve as a basis of characterisation, in terms of organic compounds of E. globulus bleached kraft pulp mill final effluent after secondary treatment and as an effort to understand the effects of tertiary treatments with fungi on low concentrations of organic compounds from biological secondary treatment.
Show more [+] Less [-]Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation
2010
Justino, Celine | Marques, Ana Gabriela | Duarte, Kátia Reis | Duarte, Armando Costa | Pereira, Ruth | Rocha-Santos, Teresa | Freitas, Ana Cristina
Background, aim, and scope Olive oil mill wastewater (OOMW) environmental impacts minimization have been attempted by developing more effective processes, but no chemical or biological treatments were found to be totally effective to mitigate their impact on receiving systems. This work is the first that reports simultaneously the efficiency of three different approaches: biological treatment by two fungal species (Trametes versicolor or Pleurotus sajor caju), enzymatic treatment by laccase, and chemical treatment by photo-Fenton oxidation on phenols removal. Materials and methods Those treatments were performed on OOMW with or without phenol supplement (p-coumaric, vanillin, guaiacol, vanillic acid, or tyrosol). OOMW samples resulted from treatments were extracted for phenols using liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Results Treatment with T. versicolor or P. sajor caju were able to remove between 22% and 74% and between 8% and 76% of phenols, respectively. Treatment by laccase was able to reduce 4% to 70% of phenols whereas treatment by photo-Fenton oxidation was responsible for 100% phenols reduction. Discussion Range of phenol degradation was equivalent between T. versicolor, P. sajor caju and laccase for p-coumaric, guaiacol, caffeic acid, and tyrosol in supplemented OOMW, which enhances this enzyme role in the biological treatment promoted by these two species. Conclusions Phenols were removed more efficiently by photo-Fenton treatment than by biological or enzymatic treatments. Recommendations and perspectives Use of fungi, laccase, or photo-Fenton presents great potential for removing phenols from OOMW. This should be further assessed by increasing the application scale and the reactor configurations effect on the performance, besides a toxicity evaluation of treated wastewater in comparison to raw wastewater.
Show more [+] Less [-]The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and common sorrel plants cultivated under hydroponic conditions
2009
Page, Valérie | Schwitzguébel, Jean-Paul
Background, aim and scope Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation and thus not eliminated by classical wastewater treatments. In the development of a phytotreatment to remove sulphonated aromatic compounds from dye and textile industrial effluents, it has been shown that rhubarb (Rheum rabarbarum) and common sorrel (Rumex acetosa) are the most efficient plants. Both species, producing natural anthraquinones, not only accumulate, but also transform these xenobiotic chemicals. Even if the precise biochemical mechanisms involved in the detoxification of sulphonated anthraquinones are not yet understood, they probably have cross talks with secondary metabolism, redox processes and plant energy metabolism. The aim of the present study was to investigate the possible roles of cytochrome P450 monooxygenases and peroxidases in the detoxification of several sulphonated anthraquinones. Materials and methods Both plant species were cultivated in a greenhouse under hydroponic conditions, with or without sulphonated anthraquinones. Plants were harvested at different times and either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 toward several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results A significant activity of cytochromes P450 was detected in rhubarb leaves, while no (rhizome) or low (petioles and roots) activity was found in other parts of the plants. An induction of this enzyme was observed at the beginning of the exposition to sulphonated anthraquinones. The results also indicated that cytochromes P450 were able to accept as substrate the five sulphonated anthraquinones, with a higher activity toward AQ-2,6-SS (0.706 nkat/mg protein) and AQ-2-S (0.720 nkat/mg protein). An activity of the cytochromes P450 was also found in the leaves of common sorrel (1.212 nkat/mg protein (AQ-2,6-SS)), but no induction of the activity occurred after the exposition to the pollutant. The activity of peroxidases increased when rhubarb was cultivated in the presence of the five sulphonated anthraquinones (0.857 nkat/mg protein). Peroxidase activity was also detected in the leaves of the common sorrel (0.055 nkat/mg protein), but in this plant, no significant difference was found between plants cultivated with and without sulphonated anthraquinones. Discussion Results indicated that the activity of cytochromes P450 and peroxidases increased in rhubarb in the presence of sulphonated anthraquinones and were involved in their detoxification mechanisms. Conclusions These results suggest the existence in rhubarb and common sorrel of specific mechanisms involved in the metabolism of sulphonated anthraquinones. Further investigation should be performed to find the next steps of this detoxification pathway. Recommendations and perspectives Besides these promising results for the phytotreatment of sulphonated anthraquinones, it will be of high interest to develop and test, at small scale, an experimental wastewater treatment system to determine its efficiency. On the other hand, these results reinforce the idea that natural biodiversity should be better studied to use the most appropriate species for the phytotreatment of a specific pollutant.
Show more [+] Less [-]Brassica napus hairy roots and rhizobacteria for phenolic compounds removal
2013
González, Paola S. | Ontañon, Ornella M. | Armendariz, Ana L. | Talano, Melina A. | Paisio, Cintia E. | Agostini, Elizabeth
Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology.
Show more [+] Less [-]