Refine search
Results 1-3 of 3
Fate of multiple Bt proteins from stacked Bt maize in the predatory lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae)
2021
Meissle, Michael | Kloos, Stefanie | Romeis, Jörg
Insecticidal Cry proteins from Bacillus thuringiensis (Bt) can be transferred from genetically engineered crops to herbivores to natural enemies. For the lady beetle Harmonia axyridis, we investigated potential uptake of Cry proteins from the gut to the body and intergenerational transfer. Third and fourth instar H. axyridis fed with pollen or spider mites from SmartStax maize contained substantial amounts of Cry1A.105, Cry1F, Cry2Ab2, Cry3Bb1, and Cry34Ab1. Cry protein concentrations in lady beetle larvae were typically one order of magnitude lower than in the food. When H. axyridis larvae were fed Bt maize pollen, median amounts of Cry protein in the non-feeding pupae were below the limit of detection except for small amounts of Cry34Ab1. No Cry protein was detected in pupae when spider mites were used as food. Cry protein concentrations decreased quickly after H. axyridis larvae were transferred from pollen or spider mites to Bt-free food. Aphids contained very low or no detectable Cry protein, and no Cry protein was found in H. axyridis larvae fed with aphids, and in pupae. When H. axyridis adults were fed with Bt maize pollen (mixed with Ephestia kuehniella eggs), the median concentrations of Cry proteins in lady beetle eggs were below the limit of detection except for Cry34Ab1 in eggs laid later in adult life. No Bt protein was detected in eggs laid by H. axyridis females fed with aphids from Bt maize. Our results confirm previous observations that Cry proteins are degraded and excreted quickly in the arthropod food web without evidence for bioaccumulation. Despite the fact that small amounts of Cry proteins were detected in some samples of the non-feeding pupal stage of H. axyridis as well as in eggs, we conclude that this route of exposure is unlikely to be significant for predators or parasitoids in a Bt maize field.
Show more [+] Less [-]Uptake and bioaccumulation of Cry toxins by an aphidophagous predator
2016
Paula, Débora P. | Andow, David A.
Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies.
Show more [+] Less [-]Biological activity and safety profile of monoterpenes against Plutella xylostella L. (Lepidoptera: Plutellidae)
2020
Cai, Yuehong | Hu, Xian | Wang, Pan | Xie, Yongjian | Lin, Zhufeng | Zhang, Zhilin
Plutella xylostella L. is a cosmopolitan pest of wild and cultivated crucifer vegetables worldwide. It has developed resistance to almost all commercial chemicals, making them one of the most problematic field pests in China. The natural plant extracts and essential oils (EOs) could be a safe alternative for agricultural pests. The development and production of EOs decrease the negative effects of synthetic chemicals. In the present study, the fumigation activity of 8 pure monoterpenes against P. xylostella was evaluated. Results from fumigation tests revealed that 8 tested compounds exhibited various degrees of toxicity against adults of the diamondback moth. Cuminaldehyde was the most toxic compound based on the 12-h LC₅₀ (0.17 mg/L) and 24-h LC₅₀ (0.12 mg/L) values, respectively. Also for larvae and eggs, cuminaldehyde was the most toxic compound. The 12-h LC₅₀ value for cuminaldehyde to 1st, 2nd, and 3rd instar larvae was 0.10 mg/L, 0.12 mg/L, and 0.55 mg/L, respectively. The 24-h LC₅₀ value for the different instar larvae was 0.07 mg/L, 0.09 mg/L, and 0.35 mg/L, respectively. The 24-h LC₅₀ value for eggs (endpoint hatching rate) was 1.95 mg/L for cuminaldehyde, followed by carvacrol and eugenol (2.05 mg/L and 2.31 mg/L, respectively). Cuminaldehyde was very friendly to the larvae and adults of Harmonia axyridis and did not cause any mortality. Our results indicated that cuminaldehyde had potential insecticidal activity against P. xylostella and could be utilized in the novel biological pesticide development.
Show more [+] Less [-]