Refine search
Results 1-10 of 89
Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils
2020
Khadhar, Samia | Sdiri, Ali | Chekirben, Anis | Azouzi, Rim | Charef, Abdelkarim
This work has been conducted as an integrated approach to study the behavior of soils to the metals from sludge amendment. Bureau Commun Reference (BCR) methodology was used as an appropriate tool to harvest precious information about heavy metals evolution versus depth before and after sludge treatments. This three-step extraction procedure (i.e., BCR) may clarify the leaching or retention of heavy metals from the amended soils, as well as their risk level. Our results indicated that sludge applications has shown an increasing flux of heavy metals towards amended soils, of which Pb was the most abundant. Heavy metals mobility in control and amended soils showed that main influencing factors are pH and total organic carbon, especially for copper mobility. Almost all of the metals decreased with soil depth, except for Ni. Speciation of heavy metals in sludges showed that about 45% of Pb, Cu and Ni were associated with residual fraction; Cd was mainly bound to reducible fraction. Speciation forms in the control soil indicated that short term application of sludge has remobilized a fraction of heavy metals into their most labile forms (i.e., exchangeable and reducible fraction). Multivariate statistical analysis suggested that Cd, Zn, Pb and Cu preferentially accumulated in organic-rich surface horizons and clay layers where adsorption played an important role as a determining mechanism. Nevertheless, adsorption did not appear to be directly controlled by high pH values (pH > 7). From Cluster Analysis (CA), one can easily recognize that Pb, Zn and Cu movement in soil profiles were significantly affected by pH, especially residual fraction, labile fraction and reducible fraction.
Show more [+] Less [-]Short-term effects of fine and coarse particles on deaths in Hong Kong elderly population: An analysis of mortality displacement
2018
Qiu, Hong | Pun, Vivian C. | Tian, Linwei
While numerous studies worldwide have evaluated the short-term associations of fine and coarse particulate matter (PM) air pollution with mortality and morbidity, these studies may be susceptible to short-term harvesting effect. We aimed to investigate the short-term association between mortality and PM with aerodynamic diameter less than 2.5 μm (PM2.5) and those between 2.5 and 10 μm (PMc) within a month prior to death, and assess the mortality displacement by PM2.5 and PMc among elderly population in Hong Kong.We obtained air pollution data from January 2011 to December 2015 from Environmental Protection Department, and daily cause-specific mortality data from Census and Statistical Department of Hong Kong. We performed generalized additive distributed lag model to examine the acute, delayed and long-lasting effects of PM2.5 and PMc within one month on mortality.We observed a statistically significant association of PM2.5 and PMc exposure over lags 0–6 days with all natural mortality and cardio-respiratory mortality. The overall cumulative effect of PM2.5 over 0–30 lag days was 3.44% (95% CI: 0.30–6.67%) increase in all natural mortality and 6.90% (95% CI: 0.58–13.61%) increase of circulatory mortality, which suggested the absence of mortality displacement by PM2.5. On the other hand, no significant cumulative association with mortality was found for PMc over 0–30 lag exposure window, and thus mortality displacement by PMc cannot be ruled out. Findings remained robust in various sensitivity analyses.We found adverse effect of both PM2.5 and PMc exposure within one week prior to death. While there was no evidence of mortality displacement in the association of PM2.5 exposure over one month prior with all natural and circulatory mortality, mortality displacement by PMc cannot be ruled out. PM2.5 may contribute more to the longer term effect of particulate matter than PMc.
Show more [+] Less [-]Differential effects of size-specific particulate matter on emergency department visits for respiratory and cardiovascular diseases in Guangzhou, China
2018
Ge, Erjia | Lai, Kefang | Xiao, Xiong | Luo, Ming | Fang, Zhangfu | Zeng, Yanjun | Ju, Hong | Zhong, Nanshan
Studies differentiating the cardiorespiratory morbidity effects of PM₂.₅, PM₁₀, and PM₂.₅∼₁₀ (i.e. coarse PM or PMc) are still limited and inconsistent.To estimate the acute, cumulative, and harvesting effects of exposure to the three size-specific PM on cardiorespiratory morbidity, and their concentration-response relations.A total of 6,727,439 emergency department (ED) visits were collected from 16 public teaching hospitals in Guangzhou, from January 1st 2012 to December 31st 2015, among which over 2.1 million were asthma, COPD, pneumonia, respiratory tract infection (RTI), hypertension, stroke, and coronary heart disease (CHD). Distributed lag non-linear models (DLNM) was used to estimate the associations between the three size-specific PM and ED visits for the cardiovascular diseases. Long-term trends, seasonality, influenza epidemics, meteorological factors, and other gas pollutants, including SO2, NO₂, and O₃, were adjusted. We stratified the analyses by gender and age.Elevated PM₂.₅ and PM₁₀ were significantly associated with increased ED visits for pneumonia, RTI, and CHD at both lag₀ and lag₀₋₃. A 10 μg/m³ increment of PMc (at lag₀₋₁₄) was estimated to increase ED visits for pneumonia by 6.32% (95% CI, 4.19, 8.49) and for RTI by 4.72% (95% CI, 3.81, 5.63), respectively. PMc showed stronger cumulative effects on asthma in children than elderly. We observed significant harvesting effects (i.e. morbidity displacements) of the three size-specific PM on respiratory but very little on cardiovascular ED visits. The concentration-response curves suggested non-linear relations between exposures to the three different sizes of PM and respiratory morbidity.Overall, the three size-specific PM demonstrated distinct acute and cumulative effects on the cardiorespiratory diseases. PM₂.₅ and PMc would have significant effects on pneumonia and RTI. Strategies should be considered to further reduce levels of ambient PM₂.₅ and PMc.
Show more [+] Less [-]Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field
2017
ur Rehman, Muhammad Zia | Khalid, Hinnan | Akmal, Fatima | Ali, Shafaqat | Rizwan, Muhammad | Qayyum, Muhammad Farooq | Iqbal, Muhammad | Khalid, Muhammad Usman | Azhar, Muḥammad
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
Show more [+] Less [-]Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region
2016
Oswald, Claire J. | Carey, Sean K.
In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L−1. The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L−1) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO42− concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed.
Show more [+] Less [-]Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L
2019
Zhang, Cheng | Xue, Jianming | Cheng, Dengmiao | Feng, Yao | Liu, Yuanwang | Aly, Hesham M. | Li, Zhaojun
Frequently detected residuals of antibiotics in crops has drawn increasing attention from research community and the general public. This study was conducted under the controlled environmental conditions to investigate the uptake, translocation and distribution of three different veterinary antibiotics (VAs) in plants of Zea mays L. (maize, the third largest crop in the world, especially in China) and the associated mechanisms. The distribution color-maps of mixed-VAs showed that the highest RCF (root concentration factors) values of chlortetracycline (CTC) and sulfamethoxazole (SMZ) were found in the 0.5–2.0 mm zone (cell division zone), while the highest RCF value of sulfathiazole (ST) was in the 6.0–8.0 mm zone (elongation zone) of root tips (0.5–10.0 mm) after 120 h of exposure to VAs. The translocation factor (TF) of CTC was greater than 1.0, but the TFs of SMZ and ST were less than 1.0 under addition of single antibiotic. However, the TFs of three VAs were all greater than 1.0 at the end of exposure under addition of mixed-VAs. The dissipation of antibiotics by maize was also demonstrated by harvesting all plant parts in an enclosed system. The possible mechanisms for uptake and translocation of VAs in maize were investigated by adding multiple respiration inhibitors into the culture solution. The RCFs of VAs were suppressed heavily by salicylhydroxamic acid (SHAM) and sodium azide (NaN3), which indicates that the uptake of VAs was an active process. The results of TFs and stem concentration factors (SCFs) of CTC and SMZ in HgCl2 treatments revealed that the translocation of VAs was associated with the aquaporin activity in maize. The findings from this study will have significant implications for the management of crop food contamination by VAs and for the development of phytoremediation technology for antibiotics in the environment.
Show more [+] Less [-]Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation
2016
Zhang, Yuping | Sallach, J Brett | Hodges, Laurie | Snow, Daniel D. | Bartelt-Hunt, Shannon L. | Eskridge, Kent M. | Li, Xu
Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation.
Show more [+] Less [-]Accumulation of wet-deposited radiocaesium and radiostrontium by spring oilseed rape (Brássica napus L.) and spring wheat (Tríticum aestívum L.)
2013
Bengtsson, Stefan. B. | Eriksson, Jan | Gärdenäs, Annemieke I. | Vinichuk, Mykhailo | Rosén, Klas
The accumulation of 134Cs and 85Sr within different parts of spring oilseed rape and spring wheat plants was investigated, with a particular focus on transfer to seeds after artificial wet deposition at different growth stages during a two-year field trial. In general, the accumulation of radionuclides in plant parts increased when deposition was closer to harvest. The seed of spring oilseed rape had lower concentrations of 85Sr than spring wheat grain. The plants accumulated more 134Cs than 85Sr. We conclude that radionuclides can be transferred into human food chain at all growing stages, especially at the later stages. The variation in transfer factors during the investigation, and in comparison to previous results, implies the estimation of the risk for possible transfer of radionuclides to seeds in the event of future fallout during a growing season is still subject to considerable uncertainty.
Show more [+] Less [-]Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L
2011
Ji, Puhui | Sun, Tieheng | Song, Yufang | Ackland, M Leigh | Liu, Yang
Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg⁻¹ Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil.
Show more [+] Less [-]Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential
2019
Dong, Qin | Fei, Ling | Wang, Cheng | Hu, Shuai | Wang, Zhaolong
Cadmium (Cd) contamination of the soil is one of the most serious environmental problems of agricultural production. Phytoremediation has attracted increasing attention because it can safely remove the soil contaminates via plant uptake, accumulations and plant harvesting. However, the high Cd toxicity to plant tissues and treatment of the large amount of hazardous plant residues from phytoremediation have limited its commercial implementation. Here we show that the leaves of the tall fescue (Festuca arundinacea) can excrete Cd out to avoid Cd toxicity in plant tissues. Cd specific fluorescence spectroscopy with laser confocal scanning microscope, screening electron microscope with energy dispersive spectroscopy and guttation fluids analysis confirmed that leaf hydathodes were the pathway of Cd excretion in tall fescue. Element analysis showed that Cd was preferentially excreted out when compared to the ion nutrients. The amount of leaf Cd excretion was linearly increased in response to the Cd stress period. The phytoremediation efficiency was evaluated to remove 14.4% of soil Cd annually by the leaf Cd excretion in our experimental system. These findings indicate that a novel strategy of Cd phytoexcretion based on washing-off and collection of leaf surface Cd is feasible to avoid Cd toxic in plant tissues and the high treatment cost of hazardous plant residues.
Show more [+] Less [-]