Refine search
Results 31-40 of 3,714
Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils Full text
2022
Zhang, Xiaokai | Wells, Mona | Niazi, Nabeel Khan | Bolan, Nanthi | Shaheen, Sabry | Hou, Deyi | Gao, Bin | Wang, Hailong | Rinklebe, Jörg | Wang, Zhenyu
Soil heavy metal contamination has increasingly become a serious environmental issue globally, nearing crisis proportions. There is an urgent need to find environmentally friendly materials to remediate heavy-metal contaminated soils. With the continuing maturation of research on using biochar (BC) for the remediation of contaminated soil, nano-biochar (nano-BC), which is an important fraction of BC, has gradually attracted increasing attention. Compared with BC, nano-BC has unique and useful properties for soil remediation, including a high specific surface area and hydrodynamic dispersivity. The efficacy of nano-BC for immobilization of non-degradable heavy-metal contaminants in soil systems, however, is strongly affected by plant rhizosphere processes, and there is very little known about the role that nano-BC play in these processes. The rhizosphere represents a dynamically complex soil environment, which, although having a small thickness, drives potentially large materials fluxes into and out of plants, notably agricultural foodstuffs, via large diffusive gradients. This article provides a critical review of over 140 peer-reviewed papers regarding nano-BC-rhizosphere interactions and the implications for the remediation of heavy-metal contaminated soils. We conclude that, when using nano-BC to remediate heavy metal-contaminated soil, the relationship between nano-BC and rhizosphere needs to be considered. Moreover, the challenges to extending our knowledge regarding the environmental risk of using nano-BC for remediation, as well as further research needs, are identified.
Show more [+] Less [-]Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China Full text
2022
Bo, Xin | Guo, Jing | Wan, Ruxing | Jia, Yuling | Yang, Zhaoxu | Lu, Yong | Wei, Min
As primary anthropogenic emission source of toxic pollutants such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), municipal solid waste (MSW) incineration has caused worldwide concern. However, a comprehensive analysis of the pollution characteristics and health risks of PCDD/Fs and heavy metals in soils around MSW incineration plants is lacking. In this study, 17 PCDD/Fs and 11 heavy metals in soil samples collected near MSW incineration plants in Sichuan province were investigated to evaluate their pollution characteristics and potential health risk. Sichuan was selected as the study area because the MSW incineration amount in this province ranks first among all inland provinces in China. The PCDD/Fs concentrations ranged from 0.30 to 7.50 ng I-TEQ/kg, which were significantly below risk screening and intervention thresholds. Regarding heavy metals, principal component analysis suggested that Hg, Pb and Zn were the primary metals emitted from the MSW incineration plants. Cluster analysis of PCDD/Fs and heavy metals showed that of PCDD/Fs homologs and heavy metals (e.g., Hg, Pb, Zn and Cd) were clustered into one group, indicating the coexistence and coaccumulation of heavy metals (especially Hg, Pb, Zn, and Cd) and PCDD/Fs in soil. These heavy metals are thus candidate tracers for PCDD/Fs in soil near MSW incineration plants. A health risk analysis found that the carcinogenic and non-carcinogenic risks of PCDD/Fs and heavy metals (except for Ni) in the soil samples were all within acceptable levels. This study provides new insights into correlations and health risks of PCDD/Fs and heavy metals in surface soil near MSW incineration plants. The findings have implications for future studies of environmental and human health risk analysis related to waste incineration.
Show more [+] Less [-]Prenatal serum thallium exposure and cognitive development among preschool-aged children: A prospective cohort study in China Full text
2022
Tong, Juan | Liang, Chunmei | Wu, Xiaoyan | Huang, Gong | Zhu, Beibei | Gao, Hui | Zhu, Yuanduo | Li, Zhijuan | Qi, Juan | Han, Yan | Ding, Peng | Zhu, Yumin | Tao, Fangbiao
Thallium, a highly toxic heavy metal and priority pollutant, has been widely reported to cause neurodevelopmental toxicity in animals. However, accessible epidemiological studies concerning the neurodevelopmental toxicity of early-life thallium exposure in humans are limited. In a prospective birth cohort including 2164 mother-child pairs, we explored the effect of prenatal serum thallium exposure on cognitive development among preschool-aged children born in Ma'anshan, Anhui, China. Serum thallium concentrations were measured in the first trimester, second trimester, third trimester, and cord blood by inductively coupled plasma mass spectrometry (ICP-MS). Child cognitive development was appraised by the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) at 4.5 years old. Multiple informants generalized estimating equations (GEEs) were fit to jointly estimate the association between the four repeated measurements of thallium concentrations and the preschool-aged children's cognitive test scores. After adjusting for potential confounders, the visual spatial index (VSI) was 1.45 points lower in the highest tertile of serum thallium during the first trimester than in the lowest tertile (p for trend = 0.04). Moreover, children in the highest tertile of serum thallium during the third trimester had a significantly lower full-scale intelligence quotient (FSIQ) (β = −1.51, 95% CI: −2.68, −0.35), VSI (β = −1.79, 95% CI: −3.16, −0.42), fluid reasoning index (FRI) (β = −1.41, 95% CI: −2.73, −0.10), and processing speed index (PSI) (β = −1.47, 95% CI: −2.71, −0.24) scores than the children in the lowest tertile. When performing stratified analysis by child sex, the associations of first- and third-trimester thallium concentrations with cognitive test scores were more prominent in boys than in girls. Our findings revealed that maternal serum thallium exposure during the first and third trimesters, but not other periods, had detrimental effects on preschoolers' cognitive development, and these effects showed sex differences.
Show more [+] Less [-]MiR-34a/Sirt1/p53 signaling pathway contributes to cadmium-induced nephrotoxicity: A preclinical study in mice Full text
2021
Hao, Rili | Song, Xinyu | Sun-Waterhouse, Dongxiao | Tan, Xintong | Li, Feng | Li, Dapeng
Cadmium (Cd), as an environmental pollutant, can lead to nephrotoxicity. However, its nephrotoxicological mechanisms have not been fully elucidated. In this study, Cd (1.5 mg/kg body weight, gavaged for 4 weeks) was found to induce the renal damage in mice, based on indicators including Cd concentration, kidney index, serum creatinine and blood urea nitrogen levels, pro-inflammatory cytokines and their mRNA expressions, levels of Bcl-2, Bax and caspase9, and histopathological changes of the kidneys. Furthermore, Cd-caused detrimental changes through inducing inflammation and apoptosis via the miR-34a/Sirt1/p53 axis. This is the first report on the role of miR-34a/Sirt1/p53 axis in regulating Cd-caused apoptosis and nephrotoxicity in mice. The findings obtained in this study provide new insights into miRNA-based regulation of heavy metal induced-nephrotoxicity.
Show more [+] Less [-]Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland Full text
2021
Feng, Sheng Jun | Liu, Xue Song | Cao, Hong Wei | Yang, Zhi Min
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
Show more [+] Less [-]Linking pollution to biodiversity and ecosystem multifunctionality across benthic-pelagic habitats of a large eutrophic lake: A whole-ecosystem perspective Full text
2021
Zhang, Weizhen | Shen, Ji | Wang, Jianjun
Biodiversity loss is often an important driver of the deterioration of ecosystem functioning in freshwater ecosystems. However, it is far from clear how multiple ecosystem functions (i.e., ecosystem multifunctionality, EMF) relate to biodiversity across the benthic-pelagic habitats of entire ecosystems or how environmental stress such as eutrophication and heavy metals enrichment might regulate the biodiversity-EMF relationships. Here, we explored the biodiversity and EMF across benthic-pelagic habitats of the large eutrophic Lake Taihu in China, and further examined abiotic factors underlying the spatial variations in EMF and its relationships with biodiversity. In our results, EMF consistently showed positive relationships to the biodiversity of multiple taxonomic groups, such as benthic bacteria, bacterioplankton and phytoplankton. Both sediment heavy metals and total phosphorus significantly explained the spatial variations in the EMF, whereas the former were more important than the latter. Further, sediment heavy metals mediated EMF through the diversity of benthic bacteria and bacterioplankton, while nutrients such as phosphorus in both the sediments and overlaying water altered EMF via phytoplankton diversity. This indicates the importance of pollution in regulating the relationships between biodiversity and EMF in freshwater environments. Our findings provide evidence that freshwater biodiversity loss among phytoplankton and bacteria will likely weaken ecosystem functioning. Our results further suggest that abiotic factors such as heavy metals, beyond nutrient enrichment, may provide relatively earlier signals of impaired ecosystem functioning during eutrophication process.
Show more [+] Less [-]Modelling copper emissions from antifouling paints applied on leisure boats into German water bodies Full text
2021
Morling, Karoline | Fuchs, Stephan
Copper-containing antifouling paints (AFP) are widely used for leisure boat maintenance. Cu emitted from AFP into German surface water bodies has been suggested to be a significant source of heavy metal pollution, threatening water quality. We developed two scenarios to model Cu emissions from AFP applied on leisure boats on national scale, which allow identifying regional hotspots. The top-down approach (scenario A) was based on a previous study on national AFP consumption, while in the bottom-up approach (scenario B), median and interquartile range of Cu release rates depending on salinity conditions were considered for emission estimation. Both scenarios clearly highlighted the locally high emission pressure on inland waters in popular watersport regions, identifying these as requiring intense protection. Scenario B generally predicted lower Cu emissions (sea: 11.05–25.53 t a⁻¹, inland: 14.15–34.59 t a⁻¹) than scenario A (sea: 22.53 t a⁻¹, inland: 47.97 t a⁻¹). To evaluate their relevance, scenario results were compared to emissions modelled with MoRE (Modelling of Regionalized Emissions), which is used as reporting tool on substance emissions by Germany. According to scenarios A and B, the emission from AFP accounted for 13 % and 4–9 % of the total Cu emissions into inland waters in 2016, respectively. Scenario results were similar or higher than other emission pathways such as industrial direct dischargers. Thus, we consider Cu emissions from AFP as a significant pathway to be included in the MoRE emission inventory. We recommend scenario B for implementation as it allows a more flexible adaptation for future modelling.
Show more [+] Less [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio Full text
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio Full text
2021
Sánchez-Aceves, Livier M | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
Show more [+] Less [-]Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio Full text
2021
Sánchez-Aceves, Livier M. | Pérez-Alvarez, Itzayana | Gómez-Oliván, Leobardo Manuel | Islas-Flores, Hariz | Barceló, Damià | Barceló, Damià [0000-0002-8873-0491] | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1–20 μg L-1) and Al (0.01–8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies. | This study was made possible by financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT, Project 300727). | Peer reviewed
Show more [+] Less [-]Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 A.D. from a snow pit at Dome A, East Antarctica Full text
2021
Liu, Ke | Hou, Shugui | Wu, Shuangye | Zhang, Wangbin | Zou, Xiang | Yu, Jinhai | Song, Jing | Sun, Xuechun | Huang, Renhui | Pang, Hongxi | Wang, Jiajia
Antarctic trace element records could provide important insights into the impact of human activities on the environment over the past few centuries. In this study, we investigated the atmospheric concentrations of 14 representative heavy metals (Al, As, Cd, Co, Cu, Fe, K, Mg, Mn, Pb, Sb, Sr, Tl and V) from 174 samples collected in a 4-m snow pit at Dome Argus (Dome A) on the East Antarctic Plateau, covering the period from 1950 to 2016 A.D. We found great variability in the annual concentration of all metals. The crustal enrichment factors suggest that the concentrations of some heavy metals (Cd, Sb, Cu, As and Pb) were likely influenced by anthropogenic activities in recent decades. An analysis of source regions suggests that heavy metal pollution at Dome A was largely caused by human activities in Australia and South America (e.g. mining production, leaded gasoline). Based on the relationship between the trace elements fluxes and sea ice concentration (SIC), sea surface temperature (SST) and annual mean air temperature at 2 m above the ground (T₂ₘ), our analysis shows that deposition and transport of atmospheric aerosol at Dome A were influenced by circum-Antarctic atmospheric circulations.
Show more [+] Less [-]Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge Full text
2021
Tang, Jian | Qiu, Zhongping | Tang, Hengjun | Wang, Haiyue | Sima, Weiping | Liang, Chao | LIao, Yi | Li, Zhihua | Wan, Shan | Dong, Jianwei
In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H⁺, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.
Show more [+] Less [-]