Refine search
Results 1-10 of 27
Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes Full text
2021
Bouzid, Iheb | Maire, Julien | Laurent, Fabien | Broquaire, Mathias | Fatin-Rouge, Nicolas
Xanthan gels were assessed to control the reductive dechlorination of hexachlorocyclohexanes (HCHs) and trichlorobenzenes (TCBs) in a strong permeability contrast and high velocity sedimentary aquifer. An alkaline degradation was selected because of the low cost of NaOH and Ca(OH)₂. The rheology of alkaline xanthan gels and their ability to deliver alkalinity homogeneously, while maintaining the latter, were studied. Whereas the xanthan gels behaved like non-Newtonian shear-thinning fluids, alkalinity and Ca(OH)₂ microparticles had detrimental effects, yet, the latter decreased with the shear-rate. Breakthrough curves for the NaOH and Ca(OH)₂ in xanthan solutions, carried out in the lowest permeability soil (9.9 μm²), demonstrated the excellent transmission of alkalinity, while moderate pressure gradients were applied. Injection velocities ranging from 1.8 to 3.8 m h⁻¹ are anticipated in the field, given the permeability range from 9.9 to 848.7 μm². Despite a permeability contrast of 8.7 in an anisotropic aquifer model, the NaOH and the Ca(OH)₂ both in xanthan gels spread only 5- and 7-times faster in the higher permeability zone, demonstrating that the delivery was enhanced. Moreover, the alkaline gels which were injected into a high permeability layer under lateral water flow, showed a persistent blocking effect and longevity (timescale of weeks), in contrast to the alkaline solution in absence of xanthan. Kinetics of alkaline dechlorination carried out on the historically contaminated soil, using the Ca(OH)₂ suspension in xanthan solution, showed that HCHs were converted in TCBs by dehydrodechlorination, whereas the latter were then degraded by reductive hydrogenolysis. Degradation kinetics were achieved within 30 h for the major and most reactive fraction of HCHs.
Show more [+] Less [-]Hexachlorocyclohexanes (HCHs) in placenta and umbilical cord blood and dietary intake for women in Beijing, China Full text
2013
Yu, Yanxin | Wang, Bin | Wang, Xilong | Wang, Rong | Wang, Wentao | Shen, Guofeng | Shen, Huizhong | Li, Wei | Wong, Minghong | Liu, Wenxin | Tao, Shu
Placenta and umbilical cord blood are important media for investigating maternal–fetal exposure to environmental pollutants. Historically hexachlorocyclohexanes (HCHs) were once widely-used in China. In this study, residues of HCHs were measured in placenta and umbilical cord blood samples for 40 women from Beijing. The measured median values of HCHs were 62.0 and 68.8 ng/g fat in placenta and umbilical cord blood, respectively. Concentrations of HCHs in placenta and umbilical cord blood of urban cohort were higher than those of rural group due to enhanced consumption of fish, meat, and milk. Residues of HCHs in placenta were significantly correlated with total food consumption, dietary intake, and maternal age, and could be predicted using the parameters dependent upon ingestion of meat and milk. The transplacental exposure of fetuses to HCHs was revealed by a close association between the residual levels in the paired placenta and the paired umbilical cord blood samples.
Show more [+] Less [-]Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content Full text
2013
Becerra-Castro, Cristina | Kidd, Petra S. | Rodríguez-Garrido, Beatriz | Monterroso, Carmela | Santos-Ucha, Paula | Prieto-Fernández, Ángeles
The performance of Cytisus striatus in association with different microbial inoculant treatments on the dissipation of the insecticide hexachlorocyclohexane (HCH) was studied. Two soils with different organic matter (A and B soil) content were spiked with 0 or 65 mg HCH kg−1. Plants were either not inoculated (NI), or inoculated with the endophyte Rhodococcus erythropolis ET54b and the HCH-degrader Sphingomonas sp. D4 separately or in combination (ET, D4 and ETD4). Unplanted pots were also established. HCH phytotoxicity was more pronounced in the B soil. Soil HCH concentrations in unplanted pots were similar to initial concentrations, whereas concentrations were reduced after plant growth: by 20% and 8% in A and B soil, respectively. Microbial inoculants also modified HCH dissipation, although effects were soil-dependent. Inoculation with the combination of strains (ETD4) led to a significant enhancement in HCH dissipation: up to 53% in the A soil and 43% in the B soil.
Show more [+] Less [-]Sequestration of organochlorine pesticides in soils of distinct organic carbon content Full text
2011
Zhang, Na | Yang, Yu | Tao, Shu | Liu, Yan | Shi, Ke-Lu
In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p′-DDE + p,p′-DDD)/p,p′-DDT is not a reliable criterion for the identification of new DDT sources.
Show more [+] Less [-]Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support Full text
2011
Chang, Chun | Lian, Fei | Zhu, Lingyan
Cu amended zero valent iron bimetallic nanoparticles were synthesized by doping Cu on the surface of iron. They were incorporated with granular activated carbon (AC) to prepare supported particles (AC–Fe⁰–Cu), which were used to remove γ-HCH. Cu on the surface of iron enhanced the dechlorination activity of Fe⁰. The dechlorination rate constant (kₒbₛ) increased with the Cu loading on the surface of iron and the maximum was achieved with 6.073% Cu. AC as a support was effective for increasing the dispersion of the nanoparticles and avoiding the agglomeration of the metallic nanoparticles. The simultaneous adsorption of γ-HCH on AC accelerated the degradation rate of γ-HCH by the bimetals. After reaction for 165 min, around 99% of γ-HCH was removed by the solids of AC–Fe⁰–Cu. In addition, AC could adsorb the degradation products. The degradation of γ-HCH was mainly through dehydrochlorination and dichloroelmination based on the intermediate products detected by GC/MS.
Show more [+] Less [-]Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records Full text
2010
Wang, Xiaoping | Gong, Ping | Zhang, Qianggong | Yao, Tandong
How do climate fluctuations affect DDT and hexachlorocyclohexane (HCH) distribution in the global scale? In this study, the interactions between climate variations and depositions of DDT and HCH in ice cores from Mt. Everest (the Tibetan Plateau), Mt. Muztagata (the eastern Pamirs) and the Rocky Mountains were investigated. All data regarding DDT/HCH deposition were obtained from the published results. Concentrations of DDT and HCH in an ice core from Mt. Everest were associated with the El Nino-Southern Oscillation. Concentrations of DDT in an ice core from Mt. Muztagata were significantly correlated with the Siberia High pattern. Concentrations of HCH in an ice core from Snow Dome of the Rocky Mountains responded to the North Atlantic Oscillation. These associations suggested that there are some linkages between climate variations and the global distribution of persistent organic pollutants. Our study approves the potential contribution of ice core records of POPs to transport mechanisms of POPs.
Show more [+] Less [-]Organohalogen compounds in human breast milk from mothers living in Payatas and Malate, the Philippines: Levels, accumulation kinetics and infant health risk Full text
2009
Malarvannan, Govindan | Kunisue, Tatsuya | Isobe, Tomohiko | Sudaryanto, Agus | Takahashi, Shin | Prudente, Maricar | Subramanian, Annamalai | Tanabe, Shinsuke
Human breast milk samples (n = 33) from primipara and multipara mothers from Payatas a waste dump site, and Malate a reference site in the Phillipines were collected in 2004 and analyzed for eight organohalogen compounds, viz., PCBs, DDTs, CHLs, HCHs, HCB, TCPMe, PBDEs and HBCDs. DDTs and PCBs were predominant in all the samples. Overall mean concentrations of PBDEs found in our study were higher (7.5 ng/g lipid wt.) than those reported for Japan and many other Asian countries. Primipara mothers had significantly higher levels of DDTs, CHLs and HCHs than multipara mothers, but not PBDEs and HBCDs. A few individuals accumulated CHLs close to or even higher than the tolerable daily intake guidelines proposed by Health Canada. First comprehensive study on organohalogen contaminants in human breast milk from the Philippines.
Show more [+] Less [-]Effects of a herbicide-insecticide mixture in freshwater microcosms: Risk assessment and ecological effect chain Full text
2009
Brink, Paul J van den | Crum, Steven J.H. | Gylstra, Ronald | Bransen, Fred | Cuppen, Jan G.M. | Brock, Theo C.M.
Effects of chronic application of a mixture of the herbicide atrazine and the insecticide lindane were studied in indoor freshwater plankton-dominated microcosms. The macroinvertebrate community was seriously affected at all but the lowest treatment levels, the zooplankton community at the three highest treatment levels, with crustaceans, caddisflies and dipterans being the most sensitive groups. Increased abundance of the phytoplankton taxa Cyclotella sp. was found at the highest treatment level. Threshold levels for lindane, both at population and community level, corresponded well with those reported in the literature. Atrazine produced fewer effects than expected, probably due to decreased grazer stress on the algae as a result of the lindane application. The safety factors set by the Uniform Principles for individual compounds were also found to ensure protection against chronic exposure to a mixture of a herbicide and insecticide at community level, though not always at the population level. Effects of chronic application of a herbicide-insecticide mixture were studied in indoor freshwater plankton-dominated microcosms. Effects could well be explained by the effects of the individual chemicals alone, no synergetic effects were reported.
Show more [+] Less [-]Soil aggregate-associated distribution of DDTs and HCHs in farmland and bareland soils in the Danjiangkou Reservoir Area of China Full text
2018
Wang, Li | Xue, Cheng | Zhang, Yushu | Li, Zhiguo | Liu, Zhuang | Pan, Xia | Chen, Fang | Liu, Yi
Soil organic matter (SOM) is the principal aggregating agent for soil aggregation and also the main adsorbent for organochlorine pesticides (OCPs) such as dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which may thereby affect OCP distribution in soils subjected to different land use types. However, the potential effects of land use on SOM and OCP distribution patterns in soil aggregates are not well understood. In this study, soils from farmlands and barelands in the Danjiangkou Reservoir area were analyzed to determine the influence of land use on OCP distribution and composition in different aggregate fractions (>3, 1–3, 0.25–1, and <0.25 mm). The results showed that the levels of ∑DDTs ranged from 9.01 to 27.48 with a mean of 14.40 ng g⁻¹, and ∑HCHs ranged from 2.06 to 4.66 with a mean of 3.19 ng g⁻¹ in farmland soils. In comparison, bareland soils were less contaminated, with total DDTs and HCHs fell in the range of 0.75–5.01 ng g⁻¹ and not detected (n.d.)-1.40 ng g⁻¹ respectively. In regard to the distribution patterns in soil aggregates, the residual levels of ∑DDTs and ∑HCHs tended to a certain degree to enrich in microaggregates (<0.25 mm) relative to bulk soils. A further analysis revealed that the enrichment of ∑DDTs and ∑HCHs in microaggregates were mainly attributed to the accumulation of p,p'-DDE and β-HCH. Moreover, SOM was found also enriched in microaggregates. The enrichment of SOM was significantly and positively correlated with these of ∑DDTs, ∑HCHs, and the dominant metabolites (i.e., DDE and β-HCH) in both land use types. Such results indicated that the variations in behavior of OCPs could be linked to the processes of soil aggregate turnover. These findings may help to enrich the theory of soil OCPs sequestration and establish targeted strategies to mitigate their health risks in the environment.
Show more [+] Less [-]Concentration responses to organochlorines in Phragmites australis Full text
2012
Faure, Mathieu | San Miguel, Angélique | Ravanel, Patrick | Raveton, Muriel
Phragmites australis shows potential for the phytoremediation of chlorinated chemicals. Also there has been some attempt to determine the phytotoxic effects of organochlorines (OC). This study reports for lindane (HCH), monochlorobenzene (MCB), 1,4-dichlorobenzene (DCB) and 1,2,4-trichlorobenzene (TCB), a no-observed-effect-concentration (NOEC₇d) that was 1000–300,000 times higher than environmental concentrations. Nevertheless, the combined OC mixture (NOEC₇d level of each congener) induced a synergistic toxic effect, causing a severe drop (70%) in chlorophyll concentration. The mixture 0.2mgL⁻¹ MCB+0.2mgL⁻¹ DCB+2.5mgL⁻¹ TCB+0.175mgL⁻¹ HCH, that was 15 times more concentrated than environmental OC mixture, did not cause phytotoxicity during 21 days. Antioxidant enzymes were affected immediately after the start of exposure (3 days), but the plants showed no signs of stress thereafter. These data suggest that environmental OC mixtures do not pose a significant risk to P. australis.
Show more [+] Less [-]