Refine search
Results 1-10 of 343
Direct injection green chromatographic method for simultaneous quantification of amoxicillin and amikacin in maternity hospital wastewater (Sagar, India) Full text
2022
Sharma, Girraj | Pahade, Priyanka | Durgbanshi, Abhilasha | Carda-Broch, Samuel | Peris-Vicente, Juan | Bose, Devasish
Amoxicillin (AMO) and amikacin (AMK) are broad-spectrum antibiotics that are most preferably given post-delivery (normal and cesarian) in the maternity hospitals located in Sagar city (Madhya Pradesh), India. Both the antibiotics make their way through sewage/drainage systems into the environment in the form of metabolized and unmetabolized compounds. Growing concern about the contamination of wastewater by antibiotics requires fast, sensitive and eco-friendly techniques. Therefore a simple, rapid and environmental friendly chromatographic method has been developed for simultaneous determination of AMO and AMK in maternity hospital wastewater samples. A micellar liquid chromatographic (MLC) method was developed with a C₁₈ column (250 mm × 4.6 mm), sodium dodecyl sulphate (SDS; 0.15 M), 1-butanol (7%) as a modifier, pH 5 and photo diode detector (PDA) at 270 nm and 256 nm for AMO and AMK respectively. The method was fast with analysis time below 9 min. In the present MLC method, linearities (r > 0.998), limits of quantification in the range of 0.02–0.04 μg/mL, repeatabilities, and intermediate precision below 4.9% were adequate for the quantification of AMO and AMK. The proposed method can be utilized to detect and quantify both the antibiotics in various samples by hospitals, pharmaceutical companies, pollution control board, municipal corporations, etc.
Show more [+] Less [-]Differential health and economic impacts from the COVID-19 lockdown between the developed and developing countries: Perspective on air pollution Full text
2022
Wang, Yichen | Wu, Rui | Liu, Lang | Yuanyuan, | Liu, ChenGuang | Hang Ho, Steven Sai | Ren, Honghao | Wang, Qiyuan | Lv, Yang | Yan, Mengyuan | Cao, Junji
It is enlightening to determine the discrepancies and potential reasons for the degree of impact from the COVID-19 control measures on air quality as well as the associated health and economic impacts. Analysis of air quality, socio-economic factors, and meteorological data from 447 cities in 46 countries indicated that the COVID-19 control measures had significant impacts on the PM₂.₅ (particulate matter with an aerodynamic diameter less than 2.5 μm) concentrations in 20 (reduced PM₂.₅ concentrations of −7.4–29.1 μg m⁻³) of the selected 46 countries. In these 20 countries, the robustly distinguished changes in the PM₂.₅ concentrations caused by the control measures differed between the developed (95% confidence interval (CI): −2.7–5.5 μg m⁻³) and developing countries (95% CI: 8.3–23.2 μg m⁻³). As a result, the COVID-19 lockdown reduced death and hospital admissions change from the decreased PM₂.₅ concentrations by 7909 and 82,025 cases in the 12 developing countries, and by 78 and 1214 cases in the eight developed countries. The COVID-19 lockdown reduced the economic cost from the PM₂.₅ related health burden by 54.0 million dollars in the 12 developing countries and by 8.3 million dollars in the eight developed countries. The disparity was related to the different chemical compositions of PM₂.₅. In particular, the concentrations of primary PM₂.₅ (e.g., BC) in cities of developing countries were 3–45 times higher than those in developed countries, so the mass concentration of PM₂.₅ was more sensitive to the reduced local emissions in developing countries during the COVID-19 control period. The mass fractions of secondary PM₂.₅ in developed countries were generally higher than those in developing countries. As a result, these countries were more sensitive to the secondary atmospheric processing that may have been enhanced due to reduced local emissions.
Show more [+] Less [-]Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank Full text
2022
Sheridan, Charlotte | Klompmaker, Jochem | Cummins, Steven | James, Peter | Fecht, Daniela | Roscoe, Charlotte
Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory test results were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March–December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006–2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM₂.₅) and nitrogen dioxide (NO₂) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08), respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM₁₀ were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM₂.₅ and NO₂ was associated with a COVID-19 positive test result in UK Biobank, though not with COVID-19 hospitalisations or deaths.
Show more [+] Less [-]Effects of acute ambient pollution exposure on preterm prelabor rupture of membranes: A time-series analysis in Shanghai, China Full text
2021
Li, Cheng | Xu, Jing-Jing | He, Yi-Chen | Chen, Lei | Dennis, Cindy-Lee | Huang, He-Feng | Wu, Yan-Ting
While the effects of ambient pollutants on adverse perinatal outcomes have been studied, most studies have focused on preterm birth, stillbirth, and low birthweight. Few studies have examined the effects of ambient pollutants on prelabor rupture of membranes (PROM). This study was designed to explore the acute effects of ambient pollutants on both term PROM (TPROM) and preterm PROM (PPROM). We enrolled pregnant women receiving antenatal care between October 2013 and December 2019 at the International Peace Maternity and Child Health Hospital (IPMCHH). The effects of ambient pollutants (including PM₂.₅, PM₁₀, SO₂, CO, NO₂, and 8-h O₃) on TPROM and PPROM were estimated using generalized additive models (GAMs). Exposure-response relationship curves were also evaluated using GAMs after adjustment for confounding factors. Potential lagged effects were examined using various lag models. The data of 100,200 pregnant women who delivered at IPMCHH were analyzed. The fitted spline curves for PPROM were similar to the temporal trends of PM₂.₅, PM₁₀, SO₂, CO and NO₂ but not O₃, while those for TPROM were different from the temporal trends of all six air pollutants. An increased risk of PPROM was associated with increased concentrations of PM₂.₅, PM₁₀, SO₂ and CO on lag days 2 and 3, while no association was found between PPROM and daily concentration of O₃. After adjustment for confounding factors, there was a shift in the exposure-response curves, indicating associations between PPROM and PM₂.₅, PM₁₀, SO₂, and CO on lag days 2–3. Interaction effects of PM₂.₅, PM₁₀, SO₂, and CO were also found to increase the risk of PPROM. In conclusion, acute exposures to six critical air pollutants were not associated with an increased risk of TPROM; however, PM₂.₅, PM₁₀, SO₂, and CO were found to interact, increasing the risk for PPROM on lag days 2 and 3.
Show more [+] Less [-]Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology Full text
2021
de Oliveira Klein, Mariana | Serrano, Sergio V. | Santos-Neto, Álvaro | da Cruz, Claudinei | Brunetti, Isabella Alves | Lebre, Daniel | Gimenez, Maíse Pastore | Reis, Rui M. | Silveira, Henrique C.S.
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH₂-F) and 2′-deoxy-2′,2′-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: <LOQ (above 1400 ng L⁻¹) and CP: <LOQ (above 300 ng L⁻¹), and GEM was quantified at 420 ng L⁻¹. Furthermore, 2-DOH-DiF (116,000 ng L⁻¹) was detected at the highest level in the hospital wastewater. There were no zebrafish deaths at any of the concentrations of the compounds used. However, we observed histological changes, including aneurysms and edema in the gills and areas of necrosis of the liver. In summary, we found higher concentrations of CP, GEM and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected for the first time. There is currently no legislation regarding the discharge of anti-cancer drugs in effluents in Brazil. This study is first to focus on effluents from specific treatments from a large cancer hospital located in small city in Brazil.
Show more [+] Less [-]Modelling local nanobiomaterial release and concentration hotspots in the environment Full text
2021
Hauser, Marina | Nowack, Bernd
Nanobiomaterials (NBMs) are a special category of nanomaterials used in medicine. As applications of NBMs are very similar to pharmaceuticals, their environmental release patterns are likely similar as well. Different pharmaceuticals were detected in surface waters all over the world. Consequently, there exists a need to identify possible NBM exposure routes into the environment. As the application of many NBMs is only carried out at specific locations (hospitals), average predicted environmental concentrations (PECs) may not accurately represent their release to the environment. We estimated the local release of poly(lactic-co-glycolic acid) (PLGA), which is investigated for their use in drug delivery, to Swiss surface waters by using population data as well as type, size and location of hospitals as proxies. The total mean consumption of PGLA in Switzerland using an explorative full-market penetration scenario was calculated to be 770 kg/year. 105 hospitals were considered, which were connected to wastewater treatment plants and the receiving water body using graphic information system (GIS) modelling. The water body dataset contained 20,167 river segments and 210 lake polygons. Using the discharge of the river, we were able to calculate the PECs in different river segments. While we calculated high PLGA releases of 2.24 and 2.03 kg/year in large cities such as Geneva or Zurich, the resulting local PECs of 220 and 660 pg/l, respectively, were low due to the high river discharge (330 and 97 m³/s). High PLGA concentrations (up to 7,900 pg/l) on the other hand were calculated around smaller cities with local hospitals but also smaller receiving rivers (between 0.7 and 1.9 m³/s). Therefore, we conclude that population density does not accurately predict local concentration hotspots of NBMs, such as PLGA, that are administered in a hospital context. In addition, even at the locations with the highest predicted PLGA concentrations, the expected risk is low.
Show more [+] Less [-]Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer Full text
2021
Hutinel, Marion | Fick, Jerker | Larsson, D.G Joakim | Flach, Carl-Fredrik
Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.
Show more [+] Less [-]Association of air pollution and greenness with carotid plaque: A prospective cohort study in China Full text
2021
Xie, Yinyu | He, Weiliang | Zhang, Xiaoling | Cui, Jian | Tian, Xiaochao | Chen, Jiang | Zhang, Kaihua | Li, Shanshan | Di, Niu | Xiang, Hao | Wang, Hebo | Chen, Gongbo | Guo, Yuming
Previous studies indicated that exposure to air pollution was associated with the progress of atherosclerosis, but evidence is very limited in China and even in the world. This study aims to assess the associations of long-term exposures to air pollution and greenness with the occurrence of carotid plaque. Participants of this cohort study were urban residents and office workers who visited Hebei General Hospital for routine physical examination annually from September 2016 through to December 2018. Eligible participants were people diagnosed the absence of carotid plaque clinically at their first hospital visit and were followed up at their second or third hospital visit. Exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM₂.₅), nitrogen dioxide (NO₂) and ozone (O₃) were estimated using an inverse distance weighted (IDW) method. The level of greenness was assessed using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The associations were evaluated using Cox proportional hazards regression models. Among 4,137 participants, 575 showed the occurrence of carotid plaque during the follow-up period. After controlling for potential confounders, the hazard ratios (HRs) and 95% confidence intervals (95%CIs) of carotid plaque associated with per interquartile range (IQR) increase in PM₂.₅, NO₂, and O₃ were 1.78 (1.55, 2.03), 1.32 (1.14, 1.53) and 1.99 (1.71, 2.31), respectively. Increased EVI and NDVI were significantly associated with lower risk of carotid plaque [HR (and 95%CI): 0.84 (0.77, 0.93) and 0.87 (0.80, 0.94)]. PM₂.₅ significantly mediated 80.47% or 93.00% of the estimated association between EVI or NDVI and carotid plaque. In light of the significant associations between air pollution, greenness and carotid plaque in this study, continued efforts are needed to curb air pollution and plan more green space considering their effects on vascular disease.
Show more [+] Less [-]Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort Full text
2020
Gustin, Klara | Barman, Malin | Stråvik, Mia | Levi, Michael | Englund-Ögge, Linda | Murray, Fiona | Jacobsson, Bo | Sandberg, Ann-Sofie | Sandin, Anna | Wold, Agnes E. | Vahter, Marie | Kippler, Maria
Observational studies have indicated that low-to-moderate exposure to cadmium (Cd), lead (Pb), and mercury (Hg) adversely affects birth anthropometry, but results are inconclusive. The aim of this study was to elucidate potential impact on birth anthropometry of exposure to Cd, Pb, and Hg in pregnant women, and to identify the main dietary sources. In the NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment) birth-cohort in northern Sweden, blood and urine were collected from pregnant women in early third trimester. Cd, Pb and Hg were measured in erythrocytes (n = 584), and Cd also in urine (n = 581), by inductively coupled plasma mass spectrometry. Dietary data were collected through a semi-quantitative food frequency questionnaire administered in mid-third trimester. Birth anthropometry data were extracted from hospital records. In multivariable-adjusted spline regression models, a doubling of maternal erythrocyte Cd (median: 0.29 μg/kg) above the spline knot of 0.50 μg/kg was associated with reduced birth weight (B: −191 g; 95% CI: −315, −68) and length (−0.67 cm; −1.2, −0.14). The association with birth weight remained when the analysis was restricted to never-smokers. Likewise, a doubling of erythrocyte Hg (median 1.5 μg/kg, mainly MeHg) above 1.0 μg/kg, was associated with decreased birth weight (−59 g; −115, −3.0), and length (−0.29 cm; −0.54, −0.047). Maternal Pb (median 11 μg/kg) was unrelated to birth weight and length. Erythrocyte Cd was primarily associated with intake of plant derived foods, Pb with game meat, tea and coffee, and Hg with fish. The results indicated that low-level maternal Cd and Hg exposure were associated with poorer birth anthropometry. Further prospective studies in low-level exposed populations are warranted.
Show more [+] Less [-]Maternal serum level of manganese, single nucleotide polymorphisms, and risk of spontaneous preterm birth: A nested case-control study in China Full text
2020
Hao, Yongxiu | Yan, Lailai | Pang, Yiming | Yan, Huina | Zhang, Le | Liu, Jufen | Li, Nan | Wang, Bin | Zhang, Yali | Li, Zhiwen | Ye, Rongwei | Ren, Aiguo
Manganese (Mn) is an essential trace element, but an excess or accumulation can be toxic. Until now, few studies have examined the effects of maternal Mn level on the risk of spontaneous preterm birth (SPB). The aims of this study were to examine the association between maternal Mn level and the risk of SPB at the early stage of pregnancy, and investigate whether this association was modified by single nucleotide polymorphisms (SNPs) in genes of superoxide dismutase (SOD) and catalase (CAT). We conducted a nested case-control study in three maternal and child health care hospitals in Shanxi province, China, from December 2009 to December 2013. From an overall cohort of 4229 women, 528 were included in our study, including 147 cases of SPB and 381 controls. Maternal blood samples were collected during 4–22 gestational weeks. The maternal serum concentrations of Mn was measured using inductively coupled plasma–mass spectrometry. We found the maternal Mn concentration in the case group (median: 1.55 ng/mL) was significantly higher than that in the control group (median: 1.27 ng/mL). Compared to the lowest level, the SPB risk was significantly increased to 1.44 (95%CI: 0.60–3.43), 2.42 (95%CI: 1.06–5.55) and 2.46 (95%CI: 1.08–5.62) respectively for the second, third and fourth quartiles in first trimester, but not significant in second trimester or overall. When exposure to a high Mn level, women who with AA (6.36, 95%CI: 1.57–25.71) and AG (3.04, 95%CI: 1.59–5.80) of rs2758352, with CC (2.34, 95%CI: 1.31–4.18) of rs699473, and with GG (2.26, 95%CI: 1.22–4.16) of rs769214 were more likely to develop a SPB, but not among women with other genotypes. In conclusion, high maternal serum Mn level is associated with the increased SPB risk in first trimester, and the association is modified by maternal SNPs of SOD2, SOD3 and CAT.
Show more [+] Less [-]