Refine search
Results 1-10 of 90
Linking pollutant exposure of humpback whales breeding in the Indian Ocean to their feeding habits and feeding areas off Antarctica Full text
2017
Das, Krishna | Malarvannan, Govindan | Dirtu, Alin | Dulau, Violaine | Dumont, Magali | Lepoint, Gilles | Mongin, Philippe | Covaci, Adrian | MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
peer reviewed | Humpback whales, Megaptera novaeangliae, breeding off la Reunion Island (Indian Ocean) undergo large-scale seasonal migrations between summer feeding grounds near Antarctica and their reproductive winter grounds in the Indian Ocean. The main scope of the current study was to investigate chemical exposure of humpback whales breeding in the Indian Ocean by providing the first published data on this breeding stock concerning persistent organic pollutants (POPs), namely polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), DDT and its metabolites (DDTs), chlordane compounds (CHLs), polybrominated diphenyl ethers (PBDEs), and methoxylated PBDEs (MeO-PBDEs). Analyses of stable isotopes δ13C and δ15N in skin resulted in further insight in their feeding ecology, which was in agreement with a diet focused mainly on low trophic level prey species, such as krill from Antarctica. POPs were measured in all humpback whales in the order of HCB > DDTs > CHLs > HCHs > PCBs > PBDEs > MeO-BDEs. HCB (median: 24 ng.g-1 lw) and DDTs (median: 7.7 ng.g-1 lw) were the predominant compounds in all whale biopsies. Among DDT compounds, p,p’-DDE was the major organohalogenated pollutant, reflecting its long-term accumulation in humpback whales. Significantly lower concentrations of HCB and DDTs were found in females than in males (p<0.001). Other compounds were similar between the two genders (p>0.05). Differences in the HCB and DDTs suggested gender-specific transfer of some compounds to the offspring. POP concentrations were lower than previously reported results for humpback whales sampled near the Antarctic Peninsula, suggesting potential influence of their nutritional status and may indicate different exposures of the whales according to their feeding zones. Further investigations are required to assess exposure of southern humpback whales throughout their feeding zones.
Show more [+] Less [-]Penguins as bioindicators of mercury contamination in the southern Indian Ocean: geographical and temporal trends Full text
2016
Carravieri, Alice | Cherel, Yves | Jaeger, Audrey | Churlaud, Carine | Bustamante, Paco | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) ; Institut de Recherche pour le Développement (IRD)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)
International audience | Penguins have been recently identified as useful bioindicators of mercury (Hg) transfer to food webs in the Southern Ocean over different spatial and temporal scales. Here, feather Hg concentrations were measured in adults and chicks of all the seven penguin species breeding in the southern Indian Ocean, over a large latitudinal gradient spanning Antarctic, subantarctic and subtropical sites. Hg was also measured in feathers of museum specimens of penguins collected at the same sites in the 1950s and 1970s. Our aim was to evaluate geographical and historical variation in Hg transfer to penguins, while accounting for feeding habits by using the stable isotope technique (δ13C, habitat; δ15N, diet/trophic level). Adult feather Hg concentrations in contemporary individuals ranged from 0.7 ± 0.2 to 5.9 ± 1.9 µg g-1 dw in Adélie and gentoo penguins, respectively. Inter-specific differences in Hg accumulation were strong among both adults and chicks, and mainly linked to feeding habits. Overall, penguin species that feed in Antarctic waters had lower feather Hg concentrations than those that feed in subantarctic and subtropical waters, irrespective of age class and dietary group, suggesting different Hg incorporation into food webs depending on the water mass. While accounting for feeding habits, we detected different temporal variations in feather Hg concentrations depending on species. Notably, the subantarctic gentoo and macaroni penguins had higher Hg burdens in the contemporary rather than in the historical sample, despite similar or lower trophic levels, respectively. Whereas increases in Hg deposition have been recently documented in the Southern Hemisphere, future monitoring is highly needed to confirm or not this temporal trend in penguins, especially in the context of actual changing Hg emission patterns and global warming.
Show more [+] Less [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries Full text
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
Fuel consumption and air emissions in one of the world’s largest commercial fisheries Full text
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Lamboy, Nathalie Bodin
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO₂-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO₂ emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO₂ air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
Show more [+] Less [-]Fuel consumption and air emissions in one of the world’s largest commercial fisheries Full text
2021
Chassot, Emmanuel | Antoine, Sharif | Guillotreau, Patrice | Lucas, Juliette | Assan, Cindy | Marguerite, Michel | Bodin, Nathalie
The little information available on fuel consumption and emissions by high seas tuna fisheries indicates that the global tuna fleet may have consumed about 2.5 Mt of fuel in 2009, resulting in the production of about 9 Mt of CO2-equivalent greenhouse gases (GHGs), i.e., about 4.5–5% of the global fishing fleet emissions. We developed a model of annual fuel consumption for the large-scale purse seiners operating in the western Indian Ocean as a function of fishing effort, strategy, and vessel characteristics based on an original and unique data set of more than 4300 bunkering operations that spanned the period 2013–2019. We used the model to estimate the total fuel consumption and associated GHG and SO2 emissions of the Indian Ocean purse seine fishery between 1981 and 2019. Our results showed that the energetic performance of this fishery was characterized by strong interannual variability over the last four decades. This resulted from a combination of variations in tuna abundance but also changes in catchability and fishing strategy. In recent years, the increased targeting of schools associated with fish aggregating devices in response to market incentives combined with the IOTC management measure implemented to rebuild the stock of yellowfin tuna has strongly modified the productivity and spatio-temporal patterns of purse seine fishing. This had effects on fuel consumption and air pollutant emissions. Over the period 2015 to 2019, the purse seine fishery, including its support vessel component, annually consumed about 160,000 t of fuel and emitted 590,000 t of CO2-eq GHG. Furthermore, our results showed that air pollutant emissions can be significantly reduced when limits in fuel composition are imposed. In 2015, SO2 air pollution exceeded 1500 t, but successive implementation of sulphur limits in the Indian Ocean purse seine fishery in 2016 and 2018 have almost eliminated this pollution. Our findings highlight the need for a routine monitoring of fuel consumption with standardized methods to better assess the determinants of fuel consumption in fisheries and the air pollutants they emit in the atmosphere.
Show more [+] Less [-]Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species Full text
2020
Le Croizier, Gaël | Lorrain, Anne | Sonke, Jeroen E. | Jaquemet, Sébastien | Schaal, Gauthier | Renedo, Marina | Besnard, Lucien | Cherel, Yves | Point, David
Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species Full text
2020
Le Croizier, Gaël | Lorrain, Anne | Sonke, Jeroen E. | Jaquemet, Sébastien | Schaal, Gauthier | Renedo, Marina | Besnard, Lucien | Cherel, Yves | Point, David
In coastal ecosystems, top predators are exposed to a wide variety of nutrient and contaminant sources due to the diversity of trophic webs within inshore marine habitats. Mercury contamination could represent an additional threat to shark populations that are declining worldwide. Here we measured total mercury, carbon and nitrogen isotopes, as well as mercury isotopes, in two co-occurring shark species (the bull shark Carcharhinus leucas and the tiger shark Galeocerdo cuvier) and their potential prey from a coastal ecosystem of the western Indian Ocean (La Réunion Island). Our primary goals were to (i) determine the main trophic Hg sources for sharks and (ii) better characterize their diet composition and foraging habitat. Hg isotope signatures (Δ¹⁹⁹Hg and δ²⁰²Hg) of shark prey suggested that bull sharks were exposed to methylmercury (MeHg) produced in offshore epipelagic waters, while tiger sharks were exposed to offshore mesopelagic MeHg with additional microbial transformation in slope sediments. Δ¹⁹⁹Hg values efficiently traced the ecology of the two predators, demonstrating that bull sharks targeted coastal prey in shallow waters while tiger sharks were mainly foraging on mesopelagic species in the deeper waters of the island slope. Unexpectedly, we found a positive shift in δ²⁰²Hg (>1‰) between sharks and their prey, leading to high δ²⁰²Hg values in the two shark species (e.g. 1.91 ± 0.52‰ in bull sharks). This large shift in δ²⁰²Hg indicates that sharks may display strong MeHg demethylation abilities, possibly reflecting evolutionary pathways for mitigating their MeHg contamination.
Show more [+] Less [-]Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species Full text
2020
Le Croizier, Gaël | Lorrain, Anne | Sonke, Jeroen E. | Jaquemet, Sébastien | Schaal, Gauthier | Renedo, Marina | Besnard, Lucien | Cherel, Yves | Point, David
In coastal ecosystems, top predators are exposed to a wide variety of nutrient and contaminant sources due to the diversity of trophic webs within coastal areas. Mercury contamination could represent an additional threat to shark populations that are declining worldwide. Here we measured total mercury, carbon and nitrogen isotopes as well as mercury isotopes in two co-occurring shark species (the bull shark Carcharhinus leucas and the tiger shark Galeocerdo cuvier) and their prey from a coastal ecosystem of the western Indian Ocean (La Réunion Island), to (i) determine their main trophic Hg source and (ii) better characterize their diet composition and foraging habitat. Hg isotope signatures (Δ199Hg and δ202Hg) of shark prey suggested that bull sharks were exposed to methylmercury (MeHg) produced in the water column while tiger sharks were exposed to mesopelagic MeHg with additional microbial transformation in slope sediments. Δ199Hg values efficiently traced the ecology of the two predators, demonstrating that bull sharks targeted coastal prey in shallow waters while tiger sharks were mainly foraging on mesopelagic species in the slope deeper waters. Unexpectedly, we found a positive shift in δ202Hg (>1‰) between sharks and their prey, leading to high δ202Hg values in the two shark species (e.g. 1.91 ± 0.52‰ in the bull shark). This large shift in δ202Hg indicates that sharks may display strong MeHg demethylation abilities, possibly reflecting evolutionary pathways for mitigating their MeHg contamination.
Show more [+] Less [-]Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species Full text
2020
Le Croizier, Gaël | Lorrain, Anne | Sonke, Jeroen, E. | Jaquemet, Sébastien | Schaal, Gauthier | Renedo, Marina | Besnard, Lucien | Cherel, Yves | Point, David | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Institut de Recherche pour le Développement (IRD) | Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) ; Institut de Recherche pour le Développement (IRD)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work was financially supported by the French National Research Agency project ANR-17-CE34-0010 MERTOX. Shark samples were collected as part of the Charc (Feder Fund convention 2011 Presage N°33021) and Ecoreco-Run (DEAL-Réunion BOP113) projects, fish samples were collected during DIPPLO (FEP, Regional council and TCO funds), ANCRE-DMX2 (FEP fund N°40055/DMSOI/2013), La Pérouse cruise (DOI: 10.17600/16004500) and MAD-RIDGE-2 cruise (DOI: 10.17600/16004900). | ANR-17-CE34-0010,MERTOX,Découvrir l'origine de la toxine methylmercure dans les écosystèmes marins(2017)
International audience | In coastal ecosystems, top predators are exposed to a wide variety of nutrient and contaminant sources due to the diversity of trophic webs within coastal areas. Mercury contamination could represent an additional threat to shark populations that are declining worldwide. Here we measured total mercury, carbon and nitrogen isotopes as well as mercury isotopes in two co-occurring shark species (the bull shark Carcharhinus leucas and the tiger shark Galeocerdo cuvier) and their prey from a coastal ecosystem of the western Indian Ocean (La Réunion Island), to (i) determine their main trophic Hg source and (ii) better characterize their diet composition and foraging habitat. Hg isotope signatures (Δ199Hg and δ202Hg) of shark prey suggested that bull sharks were exposed to methylmercury (MeHg) produced in the water column while tiger sharks were exposed to mesopelagic MeHg with additional microbial transformation in slope sediments. Δ199Hg values efficiently traced the ecology of the two predators, demonstrating that bull sharks targeted coastal prey in shallow waters while tiger sharks were mainly foraging on mesopelagic species in the slope deeper waters. Unexpectedly, we found a positive shift in δ202Hg (>1‰) between sharks and their prey, leading to high δ202Hg values in the two shark species (e.g. 1.91 ± 0.52‰ in the bull shark). This large shift in δ202Hg indicates that sharks may display strong MeHg demethylation abilities, possibly reflecting evolutionary pathways for mitigating their MeHg contamination.
Show more [+] Less [-]The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown Full text
2020
Shehzad, Khurram | Sarfraz, Muddassar | Shah, Syed Ghulam Meran
The study objective is to contemplate the effectiveness of COVID-19 on the air pollution of Indian territory from January 2020 to April 2020. We have executed data from European Space Agency (ESA) and CPCB online portal for air quality data dissemination. The Sentinel – 5 P satellite images elucidate that the Air quality of Indian territory has been improved significantly during COVID-19. Mumbai and Delhi are one of the most populated cities. These two cities have observed a substantial decrease in Nitrogen Dioxide (40–50%) compared to the same period last year. It suggests that the emergence of COVID-19 has been proved to a necessary evil as being advantageous for mitigating air pollution on Indian territory during the lock-down. The study found a significant decline in Nitrogen Dioxide in reputed states of India, i.e., Delhi and Mumbai. Moreover, a faded track of Nitrogen Dioxide can be seen at the Maritime route in the Indian Ocean. An upsurge in the environmental quality of India will also be beneficial for its neighbor countries, i.e., China, Pakistan, Iran, and Afghanistan.
Show more [+] Less [-]Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin Full text
2014
Chakraborty, Parthasarathi | Sander, Sylvia G. | Jayachandran, Saranya | Nath, B Nagender | Nagaraju, G. | Chennuri, Kartheek | Vudamala, Krushna | Lathika, N. | Mascarenhas-Pereira, Maria Brenda L.
The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.
Show more [+] Less [-]Message in a bottle: Assessing the sources and origins of beach litter to tackle marine pollution Full text
2021
Ryan, Peter G. | Weideman, Eleanor A. | Perold, Vonica | Hofmeyr, Greg | Connan, Maëlle
Beaches are key attractions for tourism and recreation, and considerable effort is made to keep beaches clean, yet many beaches still have substantial litter loads. Lasting solutions to reduce the amounts of marine litter require an understanding of litter sources. We collected bottles and other single-use containers at 32 sites around the South African coast to infer their sources based on their age and country of manufacture. Bottle densities varied greatly among beaches (8–450 bottles·km⁻¹), depending on proximity to local urban centres and beach cleaning frequency. Most bottles were plastic, despite well-developed recycling initiatives for PET and HDPE bottles in South Africa. Street litter was dominated by bottles made in South Africa (99%), but foreign-manufactured bottles comprised up to 74% of bottles at some beaches, with an increase from urban (4%) through semi-urban (24%) to remote beaches (45%). Most foreign bottles were PET drink bottles from China and other Asian countries, followed by South America and Europe, with little regional variation in the contribution from these sources. This fact, coupled with their recent manufacture dates (mainly <2 years old), indicates that most foreign PET drink bottles are dumped illegally from ships. By comparison, foreign HDPE bottles were more common along the southeast coast of South Africa than along the west coast, consistent with many of these bottles arriving by long-distance drift across the Indian Ocean from southeast Asia. The most common country of origin for these bottles was Indonesia, and most newly-arrived HDPE bottles were 4–6 years old. To tackle beach litter in South Africa we need to greatly reduce plastic leakage from land-based sources, both locally and in southeast Asia, as well as improve measures to prevent the illegal dumping of plastics and other persistent wastes from ships.
Show more [+] Less [-]Microplastics and trace metals in fish species of the Gulf of Mannar (Indian Ocean) and evaluation of human health Full text
2021
Selvam, S. | Manisha, A. | Roy, Priyadarsi D. | Venkatramanan, S. | Chung, S.Y. | Muthukumar, P. | Jesuraja, K. | Elgorban, Abdallah M. | Ahmed, Bilal | Elzain, Hussam Eldin
The importance of microplastic (MPs) contamination in marine environments is reflected by increasing number of studies in fish species. Some even dedicated to the toxicological effects from the ingestion. Microplastics (MPs) and their trace metal composition were examined in the muscle and intestine of five commercially important fish species (i.e., Sufflamen fraenatus, Heniochus acuminatus, Atropus atropos, Pseudotriacanthus and Leiognathus brevirostris) from Thoothukudi at the Gulf of Mannar coast in south India. The abundance and morphology of MPs (size, shape, and texture) in muscle and intestinal were investigated by micro-Fourier Transform Infrared Spectroscopy (μ-FT-IR) and atomic force microscope (AFM). ICP-OES was used to investigate the adsorption/leaching of trace metals in microplastics in order to assess health risk for adults and children. Particles of 100–250 μm and white color dominated, and the mean abundances (items/100 g) of total MPs were more in Pseudotriacanthus (muscle: 51.2; intestine: 50.1) compared to Heniochus acuminatus (muscle: 9.6; intestine: 15), Leiognathus brevirostris (muscle: 12; intestine: 13.2) and Atropus atropus (muscle: 15.2; intestine: 44.1). Polyethylene (35.3%), polypropylene (27.2%), polyamide (nylon) (22.2%) and fiber (15.3%) represented the MPs present in muscles, and polyamide (nylon) (30.2%), polyethylene (28.1%), polypropylene (25.9%), and fiber (15.8%) composed the intestine MPs. We estimated possible consumption of 121–456 items of MPs/week by adults and about 19–68 items of MPs/week by children by considering the sizes of safe meals. Zn, Cu, Mn and Cr in these fish species reflected influence of the sewage waste. However, the non-carcinogenic risk evaluated through EDI, THQ, HI, and CR did not suggest any immediate health problem for the consumers.
Show more [+] Less [-]Halogenated natural products and anthropogenic persistent organic pollutants in chokka squid (Loligo reynaudii) from three sites along the South Atlantic and Indian Ocean coasts of South Africa Full text
2019
Wu, Qiong | Bouwman, Hindrik | Uren, Ryan C. | van der Lingen, Carl D. | Vetter, Walter
Chokka squid (Loligo reynaudii) from three sites along the South African coast were analyzed for halogenated natural products (HNPs) and anthropogenic persistent organic pollutants (POPs). HNPs were generally more than one order of magnitude more abundant than POPs. The most prevalent pollutant, i.e. the HNP 2,3,3′,4,4′,5,5′-heptachloro-1′-methyl-1,2′-bipyrrole (Q1), was detected in all chokka squid samples with mean concentrations of 105, 98 and 45 ng/g lipid mass, respectively, at the Indian Ocean (site A), between both oceans (site B) and the South Atlantic Ocean (site C). In addition, bromine containing polyhalogenated 1′-methyl-1,2′-bipyrroles (PMBPs), 2,4,6-tribromophenol (2,4,6-TBP, up to 28 ng/g lipid mass), polybrominated methoxy diphenyl ethers, MHC-1, TBMP and other HNPs were also detected. Polychlorinated biphenyls (PCBs) were the predominant class of anthropogenic POPs. PCB 153 was the most abundant PCB congener in chokka squid from the Indian Ocean, and PCB 138 in samples from the South Atlantic Ocean and between both oceans.
Show more [+] Less [-]From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.) Full text
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco
From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.) Full text
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco
Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 μg g−1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks’ POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.
Show more [+] Less [-]From Antarctica to the subtropics: contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.) Full text
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-10-CESA-0016,POLARTOP,Contaminants chez les prédateurs supérieurs polaires: niveaux et effets des polluants organiques et métaux lourds sur la physiologie du stress et le devenir des oiseaux marins des Terres Australes Françaises (TAAF)(2010)
International audience | Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 µg g-1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks’ POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.
Show more [+] Less [-]