Refine search
Results 1-10 of 515
A Review of on Environmental Pollution Bioindicators
2018
Asif, Nayyab | Malik, Muhammad | Chaudhry, F.N.
Qualitative status of the environment is signaled by a group of indicators, known as bioindicators, several of which are responsible for showing progressive impacts of different types of pollutants. Having addressed the influence of various bioindicators in environmental pollution, it has been revealed that bioindicators are sensitive to any disturbance in any environment. With regards to the pollution, the quality of an ecosystem can be judged by an organism, which is actually an indicator and play a key role in monitoring its changes. A reliable and cost effective way to evaluate the changes in the environment is possible by means of indicator species as ecological indicators, yet selecting a specific indicator poses a real challenge, followed by its identification as well as relation among indicators and their particular applications. As a result, environmental, ecological, and biodiversity indicators fulfill their goal of monitoring environmental quality. The current situation requires cost effective bioindicators along with their reliability to detect and mitigate the impacts of pollution in our environment.
Show more [+] Less [-]A closer look on the variety and abundance of the faecal resistome of wild boar
2022
Dias, Diana | Fonseca, Carlos | Mendo, Sónia | Caetano, Tânia
Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome.The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results.As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach.
Show more [+] Less [-]Towards a North Pacific Ocean long-term monitoring program for plastic pollution: A review and recommendations for plastic ingestion bioindicators
2022
Savoca, Matthew S. | Kuhn, Susanne | Sun, ChengJun | Avery-Gomm, Stephanie | Choy, C Anela | Dudas, Sarah | Hong, Sang Hee | Hyrenbach, K David | Li, Zongxian | Ng, Connie Ka-yan | Provencher, Jennifer F. | Lynch, Jennifer M.
Marine debris is now a ubiquitous component of the Anthropocene global ocean. Plastic ingestion by marine wildlife was first reported in the 1960s and since that time, roughly one thousand marine species have been reported to consume this debris. This study focuses on plastic ingestion by marine invertebrates and vertebrates in the North Pacific Ocean. Specifically, we reviewed the scientific literature to assess the scope of the problem, identified key bioindicator species, and proposed guidelines for future monitoring of plastic debris in North Pacific marine ecosystems. Our meta-analysis confirmed that the North Pacific is among the most polluted ocean regions globally; roughly half of all fish and seabird specimens and more than three-quarters of sea turtles and bivalve specimens examined in this region had consumed plastic. While there are not enough standardized data to assess if these ingestion rates are changing, sampling standardization and reporting of methods are improving over time. Using a rubric-evaluation approach, we evaluated 352 species for their potential to serve as bioindicators of the prevalence of plastic pollution in the North Pacific. This analysis revealed a suite of 12 bioindicator species candidates which sample a variety of ecosystem components and cover a wide range of plastic size classes. Thus, we contend that these bioindicator candidates provide a key foundation for developing a comprehensive plastic monitoring program in the region. To enhance the utility of these bioindicators, we developed a framework for standardized data collection to minimize methodological variability across different studies and to facilitate the assessment of temporal trends over space and time. Tracking plastic ingestion by these bioindicators will help to assess the effectiveness of mitigation actions in the region, a critical step to evaluate progress towards sustainability and improved ocean health in the 21st century.
Show more [+] Less [-]Concentration dynamics of polychlorinated biphenyls and organochlorine pesticides in blood of growing Grey heron (Ardea cinerea) chicks in the wild
2022
Valters, Karlis | Olsson, Anders | Vīksne, J. (Jānis) | Rubene, Liga | Bergman, Åke
Organochlorine contaminants (OCs) – organochlorine pesticides (OCPs) and industrial products and byproducts – are included in different monitoring programmes and surveys, involving various animal species. Fish-eating birds are suitable indicator species for OCs. Adult birds may be difficult to capture, but chicks can be sampled more easily. Blood of birds is a potentially suitable non-destructive matrix for analysis, as OC levels in blood reflect their concentrations in the body. The study was aimed at investigating how age of fast-growing Grey heron (Ardea cinerea) chicks affects contaminant levels in their blood and thus how important is sampling at exact age for biomonitoring purposes. In 1999 on Lake Engure in Latvia whole blood samples of heron chicks were collected at three different time points, with seven and nine days in between the first and second and second and third sampling points, respectively. Twenty-two chicks were sampled at all three times. In total, 102 samples were analysed for 19 polychlorinated biphenyl (PCB) congeners, DDT metabolites – DDE and DDD, hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), and trans-nonachlor. Total PCB concentrations averaged around 2000 ng/g dry extracted matter (EM). DDE was the dominant individual contaminant (ca. 800 ng/g EM), followed by CB-153, -138, and −118. Most of the other analysed OCs were below 100 ng/g EM. No significant (p > 0.05) differences in OC concentrations were found between the three sampling occasions, except for trans-nonachlor. This means that blood can safely be sampled for biomonitoring purposes during the 17 days’ time window. The analysed legacy contaminants may serve as model substances for other persistent organic pollutants.
Show more [+] Less [-]Comparison between machine linear regression (MLR) and support vector machine (SVM) as model generators for heavy metal assessment captured in biomonitors and road dust
2022
Salazar-Rojas, Teresa | Cejudo-Ruiz, Fredy Ruben | Calvo-Brenes, Guillermo
Exposure to suspended particulate matter (PM), found in the air, is one of the most acute environmental problems that affect the health of modern society. Among the different airborne pollutants, heavy metals (HMs) are particularly relevant because they are bioaccumulated, impairing the functions of living beings. This study aimed to establish a method to predict heavy metal concentrations in leaves and road dust, through their magnetic properties measurements. For this purpose, machine learning, automatic linear regression (MLR), and support vector machine (SVM) were used to establish models for the prediction of airborne heavy metals based on leaves and road dust magnetic properties. Road dust samples and leaves of two common evergreen species (Cupressus lusitanica/Casuarina equisetifolia) were sampled simultaneously during two different years in the Great Metropolitan Area (GMA) of Costa Rica. MLR and SVM algorithms were used to establish the relationship between airborne heavy metal concentrations based on single (χlf) and multiple (χlf y χdf) leaf magnetic properties and road dust. Results showed that Fe, Cu, Cr, V, and Zn concentrations were well-simulated by SVM prediction models, with adjusted R² values ≥ 0.7 in both training and test stages. By contrast, the concentrations of Pb and Ni were not well-simulated, with adjusted R² values < 0.7 in both training and test stages. Heavy metal predicción models using magnetic properties of leaves from Casuarina equisetifolia, as collectors, yielded better prediction results than those based on the leaves of Cupressus lusitanica and road dust, showing relatively higher adjusted R² values and lower errors (MAE and RMSE) in both training and test stages. SVM proved to be the best prediction model with variations between single (χlf) and multiple (χlf y χdf) magnetic properties depending on the element studied.
Show more [+] Less [-]Microlophus atacamensis as a biomonitor of coastal contamination in the Atacama Desert, Chile: An evaluation through a non-lethal technique
2021
In this report, we investigated the accumulation of heavy metals in the lizard Microlophus atacamensis, in three coastal areas of the Atacama Desert, northern Chile. We captured reptiles in a non-intervened area (Parque Nacional Pan de Azúcar, PAZ), an area of mining impact (Caleta Palitos, PAL) and an active industrial zone (Puerto de Caldera, CAL). Our methods included a non-lethal sampling of reptiles’ tails obtained by autotomy and a few sacrificed animals to perform a stomach contents analysis. The concentrations of lead, copper, nickel, zinc and cadmium were measured by atomic absorption spectrophotometry in both soil and prey and compared to those recorded in the lizards’ tails. Data obtained from lizard tails captured in PAL showed significantly high concentrations of Pb, Cu, Ni, and Zn compared to the other two sites PAZ and CAL. We did not find statistically significant differences among PAZ, PAL and CAL soils, probably due to the similar geological composition of the sites. However, the regional background values for Pb indicate contamination or at least metal enrichment in soils of the three sites, for Cu the global background values indicate contamination for the three sites, and for Cd both the regional and global backgroud values show high values. The analysis of the stomach content showed differences in the food sources of the lizards among the sites studied. The concentration of heavy metal in lizard tissues versus prey delivered values of the Trophic Transfer Factor higher than one (1), suggesting that food may be a primary source of metals in the tissues of M. atacamensis. Calculations of the Bioaccumulation Factor (BAF) and the Ecological Risk (IR) resulted in values higher than one (1) indicating the relevance of this process in the sites studied. In this article, we report relationships between environmental contaminants, mainly putative preys, and concentrations found in lizard tails, which is more substantial in areas with historical heavy metal contamination such as PAL where the non-lethal technique developed in this research suggests a process of metal bioaccumulation in M. atacamensis.
Show more [+] Less [-]Trace metals at the tree-litter-soil- interface in Brazilian Atlantic Forest plots surrounded by sources of air pollution
2021
Nakazato, Ricardo Keiichi | Lourenço, Isabela S. | Esposito, Marisia P. | Lima, Marcos E.L. | Ferreira, Mauricio L. | Campos, Rafaela de O.A. | Rinaldi, Mirian C.S. | Domingos, Marisa
Passive biomonitoring was applied in four Atlantic forest plots in southeast Brazil, affected by different levels of trace metal pollution (OP site located in Minas Gerais State and PEFI, PP and STG located in São Paulo State). Native tree species were selected as biomonitors according to their abundance in each plot and successional classification. Current trace metal concentrations in total suspended particles, leaves of non-pioneer (NPi) and pioneer (Pi) species, topsoil (0–20 cm) and litter and concentration ratios at the plant/soil interface were analyzed to verify the atmosphere-plant-soil interactions, basal concentrations, spatial variations and metal accumulation at the ecosystem level. Redundant analysis helped to identify similar characteristics of metal concentrations in PP and PEFI, which can be influenced by the high concentrations of elements related to anthropogenic inputs. Analysis of variance and multivariate statistics indicated that the trees of OP presented higher concentrations of Cr, Fe, Mn and Ni than those in the other sites. High enrichment of Cd, Fe, Ni in non-pioneer plants indicated that the PP forest (initially considered as the least polluted) has still been affected by metal pollution. Soil collected in STG was enriched by all elements, however these elements were low available for plant uptake. Metal deposited in leaves and litter was an important sink for soil cycling, nevertheless, these metals are not bioavailable in most cases. Non-pioneer tree species revealed to be more appropriate than pioneer species to indicate the current panorama of the contamination and bioavailability levels of trace metals in the tree community-litter-soil interface of the Atlantic forest remnants included in this study.
Show more [+] Less [-]Organochlorine compounds pose health risks to the Qinling Giant Panda (Ailuropoda melanoleuca qinlingensis)
2021
Zhao, Yan | Chen, Yiping | Macdonald, David W. | Li, Jun | Ma, Qing-yi
To assess organochlorine compound (OC) contamination, its possible sources, and adverse health impacts on giant pandas, we collected soil, bamboo, and panda fecal samples from the habitat and research center of the Qinling panda (Ailuropoda melanoleuca qinlingensis)—the rarest recognized panda subspecies. The polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations were comparatively low which suggests that moderate sources of OC pollution currently. OC levels were lower in samples from nature reserve than in those collected from pandas held in captivity, and OC levels within the reserve increased between functional areas in the order: core, buffer and experimental. The distribution patterns, and correlation analyses, combined with congener distributions suggested PCBs and OCPs originated from similar sources, were dispersed by similar processes, being transported through atmosphere and characterized by historical residues. Backward trajectory analyses results, and detected DRINs (aldrin, dieldrin, endrin and isodrin) both suggest long-range atmospheric transport of pollution source. PCBs pose potential cancer risk, and PCB 126 was the most notable toxicant as assessed be the high carcinogenic risk index. We provide data for health risk assessment that can guide the identification of priority congeners, and recommend a long-term monitoring plan. This study proposes an approach to ecotoxicological threats whereby giant pandas may be used as sentinel species for other threatened or endangered mammals. By highlighting the risks of long-distance transmission of pollutants, the study emphasizes the importance of transboundary cooperation to safeguard biodiversity.
Show more [+] Less [-]Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species
2021
Xu, Sheng | Wang, Yijing | Zhang, Weiwei | Li, Bo | Du, Zhong | He, Xingyuan | Chen, Wei | Zhang, Yue | Li, Yan | Li, Maihe | Schaub, Marcus
Atmospheric warming and increasing tropospheric ozone (O₃) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O₃ (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O₃ concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Show more [+] Less [-]Sponges as bioindicators for microparticulate pollutants?
2021
Girard, Elsa B. | Fuchs, Adrian | Kaliwoda, Melanie | Lasut, Markus | Ploetz, Evelyn | Schmahl, Wolfgang W. | Wörheide, Gert
Amongst other threats, the world’s oceans are faced with man-made pollution, including an increasing number of microparticulate pollutants. Sponges, aquatic filter-feeding animals, are able to incorporate fine foreign particles, and thus may be a potential bioindicator for microparticulate pollutants. To address this question, 15 coral reef demosponges sampled around Bangka Island (North Sulawesi, Indonesia) were analyzed for the nature of their foreign particle content using traditional histological methods, advanced light microscopy, and Raman spectroscopy. Sampled sponges accumulated and embedded the very fine sediment fraction (<200 μm), absent in the surrounding sand, in the ectosome (outer epithelia) and spongin fibers (skeletal elements), which was confirmed by two-photon microscopy. A total of 34 different particle types were identified, of which degraded man-made products, i.e., polystyrene, particulate cotton, titanium dioxide and blue-pigmented particles, were incorporated by eight specimens at concentrations between 91 and 612 particle/g dry sponge tissue. As sponges can weigh several hundreds of grams, we conservatively extrapolate that sponges can incorporate on average 10,000 microparticulate pollutants in their tissue. The uptake of particles, however, appears independent of the material, which suggests that the fluctuation in material ratios is due to the spatial variation of surrounding microparticles. Therefore, particle-bearing sponges have a strong potential to biomonitor microparticulate pollutants, such as microplastics and other degraded industrial products.
Show more [+] Less [-]