Refine search
Results 1-10 of 178
Response Surface Methodology for Adsorption of Humic Acid by Polyetheretherketone/ Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles from Industrial Wastewater
2023
Pournamdari, Elham
The applicability of Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles synthesized for eliminating humic acid rapidly from industrial wastewater. Identical techniques, including BET, FTIR, XRD, and SEM have been utilized to characterize this novel material. Also, the impacts of variables including initial humic acids (HAs) concentration (X1), pH (X2), adsorbent dosage (X3), and sonication time (X4) came under scrutiny using central composite design (CCD) under response surface methodology (RSM). The values of 10 mgL-1, 6.0, 0.025 g, and 5.0 min were investigated through batch experiments, considered as the ideal values for humic acids (HAs) concentration, pH, adsorbent dosage, and contact time, respectively. Adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model and pseudo-second-order kinetics (R2: 0.999) with maximum adsorption capacity (102.0 mgg-1), respectively. The overall results confirmed that Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles could be a promising adsorbent material for humic acids (HAs) removal from industrial wastewater.
Show more [+] Less [-]Aeration, Alum, and Kaolin Ore for Nutrient and Heavy Metal Removal from Urban Wastewater for the Purpose of Reuse and Conservation
2023
Soliman, Mohamed | Rashed, Mohamed | Soltan, Mohamed
Domestic and industrial wastewater contributed to some urban wastewater, which requires specific processing before being disposed into surface waters or reused for irrigation. This paper aimed to employ kaolin as an adsorbent to remove heavy metals from wastewater, as well as aeration and alum to remove nutrients. Experiment were conducted in three parts: first, involved using the aeration method to determine the ideal amount of time to remove or minimize the nutrients. Second, involves treating the solution with potassium alum using various alum doses at the obvious times to eliminate or minimize the nutrients, while third step involves treating the solution with kaolin ore with a size of < 63 µm at various doses, pH, and contact times to remove heavy metals. The findings showed that the aeration method completely removed CO3, OH, PO4, NO3, Ca, and Mn ions after contact time equal 120, 24, 192, 24, 120, and 48 hrs, respectively. Applaying alum treatment method can remove completely CO3, OH, PO4, NO3, and Mn, after contact time 120, 24, 120, 24, and 24 hrs, respectively. When Kaolin ore used as adsorbent, the removal efficiency of Fe, Cd, Cr, Cu, Sr, Mn, and Zn were; 92, 100, 100, 100, 94, 100, and 88 % ,respectively in 24 hours contact time. The experiment succeeds in treatment of industrial wastewater that was within the range of specified limitations for disposing into surface water or reuse in irrigation field as stated by Egyptian standard code using the three successive treatment techniques.
Show more [+] Less [-]Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater
2022
Jayapal, Mohanapriya | Jagadeesan, Hema | Krishnasamy, Vinothkumar | Shanmugam, Gomathi | Muniyappan, Vignesh | Chidambaram, Dinesh | Krishnamurthy, Satheesh
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Show more [+] Less [-]Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS
2022
Chouchene, Khawla | Nacci, Tommaso | Modugno, Francesca | Castelvetro, Valter | Ksibi, Mohamed
Plastic film mulching and use of wastewaters for irrigation have been common agricultural practices for over half a century in Tunisia, especially in arid regions, resulting in the undesired creation of a pathway for microplastics (MPs) to enter farmland soil. In order to assess the extent and characteristics of soil contamination by MPs in the Moknine province, an area of intensive agricultural practices, 16 farmland soil samples were collected and characterized. The total concentration of targeted MPs was 50–880 items/kg; among them, the most common MPs type being polypropylene (PP), mainly occurring as white/transparent fibers with small size (cross section <0.3 mm). SEM images of MPs surfaces revealed multiple features related to environmental exposure and degradation. ATR-FTIR spectroscopy and pyrolysis-GC/MS analyses enabled the accurate identification of MPs separated from the embedding soil micro- and macro-aggregates. Finally, contamination of the polymeric microparticles with a broad range of metals was found by ICP-MS analysis, suggesting that MPs can be vectors for transporting heavy metals in the soil and indicators of soil contamination as a result of mismanagement of industrial wastewaters.
Show more [+] Less [-]Multi-regional industrial wastewater metabolism analysis for the Yangtze River Economic Belt, China
2021
Han, Dengcheng | Huang, Gordon | Liu, Lirong | Zhai, Mengyu | Gao, Sichen
Enormous wastewater discharges have significantly impeded the sustainable development. As several economic belt has been formed in China, systematic analysis of multi-regional wastewater metabolic system is required for advancing wastewater mitigation effectively and efficiently. In this study, a distributive environmental input-output model (DEIO) is developed for the Yangtze River Economic Belt (YREB) to provide bases for supporting sustainable development from inter-regional and inter-sectoral perspectives. The discharges and flows of wastewater and related pollutants (i.e., chemical oxygen demand (COD) and ammonia nitrogen (AN)) among sectors and regions are analyzed to providing solid bases for wastewater management within the YREB. The results show that the industrial wastewater mitigation in YREB is desired urgently. The industrial wastewater discharges in Jiangsu and Zhejiang provinces are numerous, while Hunan and Yunnan provinces are more inclined to suffer from serious COD and AN pollution. In addition, the manufacture of food, tobacco, chemical materials, and pharmaceutical are the typical sectors with a large amount of direct wastewater discharge, and the tertiary industry is ranked at the first in indirect wastewater discharge. According to the analysis, the implementation of the “Supply-side Structure Reform” and the “Replace Subsidies with Rewards” policy can benefit the wastewater mitigation in the YREB.
Show more [+] Less [-]Ammonium removal and recovery from sewage water using column-system packed highly selective ammonium adsorbent
2021
Tanaka, Hisashi | Fujimoto, Masayuki | Minami, Kimitaka | Takahashi, Akira | Parajuli, Durga | Hiwatari, Takehiko | Kawakami, Masami | Kawamoto, Tohru
One of the strategies to realize a nitrogen cycle society, we attempted to recover ammonium ions from industrial wastewater, especially sewage water with adsorbent materials. We have developed an adsorbent with high ammonium selectivity based on copper hexacyanoferrate and granulated it as pellets. Using a compact column system filled with this granule adsorbent, ammonium ions were recovered from sewage containing 1000–1500 mg-NH₄⁺/L ammonium ions. Despite the coexistence of many metal ions, the adsorbent selectively and stably adsorbed ammonium ions. Furthermore, it was shown that the saturated adsorbent can be regenerated by flowing a potassium ion solution through a column adsorbent to desorb ammonium ions. In other words, the column can be used repeatedly, and there was almost little deterioration in adsorption even after 250 cycles. In addition, it was shown that by increasing the number of stages of this column, it is possible to sufficiently reduce the ammonium in the adsorbent solution and recover the concentrated ammonium solution.
Show more [+] Less [-]Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar
2021
Fu, Dun | Kurniawan, Tonni Agustiono | Li, Heng | Wang, Haitao | Wang, Yuanpeng | Li, Qingbiao
A highly efficient, eco-friendly and relatively low-cost catalyst is necessary to tackle bottlenecks in the treatment of industrial wastewater laden with heavy metals and antibiotic such as livestock farm and biogas liquids. This study investigated co-oxidative removal of arsenite (As(III)) and tetracycline (TC) by iron nanoparticles (Fe NP)-impregnated carbons based on heterogeneous Fenton-like reactions. The composites included Fe NP@biochar (BC), Fe NP@hydrochar (HC), and Fe NP@HC-derived pyrolysis char (HDPC). The functions of N and S atoms and the loading mass of the Fe NP in the Fe NP@BC in heterogeneous Fenton-like reactions were studied. To sustain its cost-effectiveness, the spent Fe NP@BC was regenerated using NaOH. Among the composites, the Fe NP@BC achieved an almost complete removal of As(III) and TC under optimized conditions (1.0 g/L of dose; 10 mM H₂O₂; pH 6; 4 h of reaction; As(III): 50 μM; TC: 50 μM). The co-oxidative removal of As(III) and TC by the Fe NP@ BC was controlled by the synergistic interactions between the Fe NPs and the active N and S sites of the BC for generating reactive oxygen species (ROS). After four consecutive regeneration cycles, about 61 and 95% of As(III) and TC removal were attained. This implies that the spent carbocatalyst still has reasonable catalytic activities for reuse. Overall, this suggests that adding technological values to unused biochar as a carbocatalyst like Fe NP@BC was promising for co-oxidative removal of As(III) and TC from contaminated water.
Show more [+] Less [-]Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks
2021
Liu, Jing | Liu, Renzhi | Yang, Zhifeng | Kuikka, Sakari
The accidental leakage of industrial wastewater containing heavy metals from enterprises poses great risks to resident health, social instability, and ecological safety. During 2005–2018, heavy metal mixed pollution accidents comprised approximately 33% of the major environmental ones in China. A Bayesian Networks-based probabilistic approach is developed to quantitatively predict ecological and human health risks for heavy metal mixed pollution accidents at the watershed scale. To estimate the probability distributions of joint ecological exposure once a heavy metal mixed pollution accident occurs, a Copula-based joint exposure calculation method, comprised of a hydro-dynamic model, emergent heavy metal pollution transport model, and the Copula functions, is embedded. This approach was applied to the risk assessment of acute Cr⁶⁺-Hg²⁺ mixed pollution accidents at 76 electroplating enterprises in 24 risk sub-watersheds of the Dongjiang River downstream watershed. The results indicated that nine sub-watersheds created high ecological risks, while only five created high human health risks. In addition, the ecological and human health risk levels were highest in the tributary (the Xizhijiang River), while the ecological risk was more critical in the river network, and the human health risk was more serious in the mainstream of the Dongjiang River. The quantitative risk assessment provides a substantial support to incident prevention and control, risk management, as well as regulatory decision making for electroplating enterprises.
Show more [+] Less [-]Emerging concerns of VOCs and SVOCs in coking wastewater treatment processes: Distribution profile, emission characteristics, and health risk assessment
2020
Saber, Ayman N. | Zhang, Haifeng | Cervantes-Avilés, Pabel | Islam, Ashraful | Gao, Yingxin | An, Wei | Yang, Min
In this study, the distribution profiles, emission characteristics, and health risks associated with 43 volatile and semi-volatile organic compounds, including 15 phenols, 18 polycyclic aromatic hydrocarbons (PAHs), 6 BTEX, and 4 other compounds, were determined in the wastewater treatment plant (WWTP) of a coking factory (plant C) and the succeeding final WWTP (central WWTP). Total phenols with a concentration of 361,000 μg L⁻¹ were the predominant compounds in the influent wastewater of plant C, whereas PAHs were the major compounds in the final effluents of both coking WWTPs (84.4 μg L⁻¹ and 30.7 μg L⁻¹, respectively). The biological treatment process in plant C removed the majority of volatile organic pollutants (94.1%–99.9%). A mass balance analysis for plant C showed that biodegradation was the main removal pathway for all the target compounds (56.6%–99.9%) except BTEX, chlorinated phenols, and high molecular weight (MW) PAHs. Chlorinated phenols and high MW PAHs were mainly removed via sorption to activated sludge (51.8%–73.2% and 60.2%–75.9%, respectively). Air stripping and volatilization were the dominant mechanisms for removing the BTEX compounds (59.8%–73.8%). The total emission rates of the detected volatile pollutants from plant C and the central WWTP were 1,640 g d⁻¹ and 784 g d⁻¹, respectively. Benzene from the equalization basins of plant C and the central WWTP corresponded to the highest inhalation carcinogenic risks (1.4 × 10⁻³ and 3.2 × 10⁻⁴, respectively), which exceeded the acceptable level for human health (1 × 10⁻⁶) recommended by the United States Environmental Protection Agency. The results showed that BaP exhibited the highest inhalation non-cancer risk, with a hazard index ratio of 70 and 30 for plant C and the central WWTP, respectively. Moreover, the excess sludge generated during wastewater treatment should also be carefully handled because it adsorbed abundant PAHs and chlorinated phenols at coking plant C (58,000 μg g⁻¹ and 3,500 μg g⁻¹) and the central WWTP (622 μg g⁻¹ and 54 μg g⁻¹).
Show more [+] Less [-]Insights into long-term effects of amino-functionalized multi-walled carbon nanotubes (MWCNTs-NH2) on the performance, enzymatic activity and microbial community of sequencing batch reactor
2019
Gao, Mengchun | Gao, Feng | Ma, Bingrui | Yu, Naling | She, Zonglian | Zhao, Changkun | Guo, Liang | Zhao, Yangguo | Li, Shanshan | Jin, Chunji
Carbon nanotubes (CNTs) inevitably enter domestic sewage and industrial wastewater with the continuous increase of their production and application field. The potential effect of CNTs on biological wastewater treatment processes has raised wide concerns due to their biotoxicity. In the present study, the performance, microbial community and enzymatic activity of sequencing batch reactors (SBRs) were evaluated under 148-day exposure of amino-functionalized multi-walled CNTs (MWCNTs-NH₂) at 10 and 30 mg/L. The COD removal efficiency at 10 and 30 mg/L MWCNTs-NH₂ gradually reduced from 91.03% and 90.43% on day to 89.11% and 86.70% on day 148, respectively. The NH₄⁺-N removal efficiency at 10 and 30 mg/L MWCNTs-NH₂ gradually reduced from 98.98% and 98.46% on day 1 to 96.65% and 63.39% on day 148, respectively. Compared to 0 mg/L MWCNTs-NH₂, the oxygen-utilizing rate, ammonia-oxidizing rate, nitrite-oxidizing rate, nitrite-reducing rate and nitrate-reducing rate at 30 mg/L MWCNTs-NH₂ were decreased by 52.35%, 60.58%, 55.12%, 56.56% and 57.42% on day 148, respectively. The microbial reactive oxygen species and lactate dehydrogenase release on day 148 was increased by 59.71% and 55.28% at 30 mg/L MWCNTs-NH₂, respectively. The key microbial enzymatic activity related to nitrogen removal decreased with the increase of operation time under MWCNTs-NH₂ stress. The relative abundances of Nitrosomonas, Nitrosospira, Nitrospira and some denitrifying bacteria at 10 mg/L MWCNTs-NH₂ gradually reduced with an increment in operation time. The changes of nitrogen removal rate, microbial community and enzymatic activity of SBR were related to the time-cumulative nonlinear inhibition effect under long-term exposure.
Show more [+] Less [-]