Refine search
Results 1-9 of 9
Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning 1H NMR spectroscopy
2016
1H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The 1H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, 1H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity.
Show more [+] Less [-]1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil
2010
1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-β-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised ∼65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.
Show more [+] Less [-]Effects of hypoxia in the gills of the Manila clam Ruditapes philippinarum using NMR-based metabolomics
2017
Zhang, Ying | Wu, Huifeng | Wei, Lei | Xie, Zeping | Guan, Bo
Coastal hypoxia affects the survival, behavior, and reproduction of individual local marine organisms, and the abundance, biomass, and biodiversity of coastal ecosystems. In this study, we investigated the chronic effects of hypoxia on the metabolomics in the gills of Ruditapes (R.) philippinarum. The results indicated significant alterations in the metabolite profiles in the gills of the hypoxia-treated clams, in comparison with those maintained under normoxia. The levels of betaine, taurine, glycine, isoleucine, and alanine were significantly reduced, suggesting a disturbance of osmotic balance associated with hypoxia. Meanwhile, metabolites involved in energy metabolism, such as alanine and succinate, were also affected. Dramatic histopathological changes were observed in the gills and hepatopancreases of R. philippinarum grown in hypoxic waters, demonstrating tissue damages apparently caused by long-term exposure to hypoxia. Our findings suggest that hypoxia significantly affects the physiology of R. philippinarum, even at a sub-lethal level, and impedes health of the clams.
Show more [+] Less [-]The Proper Supply of S Increases Amino Acid Synthesis and Antioxidant Enzyme Activity in Tanzania Guinea Grass Used for Cd Phytoextraction
2017
Rabêlo, FlávioHenrique Silveira | Azevedo, RicardoAntunes | Monteiro, FranciscoAntonio
Increased Cd concentrations in the environment impair plant growth, but plants properly supplied with S may develop greater tolerance to the damage caused by Cd and be used in the remediation of contaminated environments. The aim of this study was to evaluate the Cd-phytoextraction potential of Panicum maximum cv. Tanzania grown with S rates and to identify alterations in the concentrations of nutrients and amino acids and in the activity of some antioxidant enzymes under Cd stress conditions. Combinations of five S rates (0.1, 1.0, 1.9, 2.8, and 3.7 mmol L⁻¹) and five Cd rates (0.0, 0.5, 1.0, 1.5, and 2.0 mmol L⁻¹) in a nutrient solution were provided in two plant growth periods. Concentrations of N, P, and Zn increased, while K, Fe, and Mn decreased with exposure to Cd. The concentration of Ca decreased as the S supply was increased. Isoleucine, leucine, proline, and valine concentrations increased with exposure to Cd and with higher levels of S. The APX activity was higher at the highest Cd exposure level. Activity and number of SOD and GR isoforms in the roots and of CAT in the shoots of the regrown plant decreased at the highest level of contamination by Cd, which was lessened by the supply of greater S rates. Tanzania guinea grass grown with an adequate supply of S has the potential for phytoextraction of Cd-contaminated environments.
Show more [+] Less [-]Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach
2017
Kokushi, Emiko | Shintoyo, Aoi | Koyama, Jiro | Uno, Seiichi
In this study, the metabolic effects of waterborne exposure of medaka (Oryzias latipes) to nominal concentrations of 20 (L group) and 2000 μg/L (H group) 2,4-dichlorophenol (DCP) were examined using a gas chromatography/mass spectroscopy (GC/MS) metabolomics approach. A principal component analysis (PCA) separated the L, H, and control groups along PC1 to explain the toxic effects of DCP at 24 h of exposure. Furthermore, the L and H groups were separated along PC1 at 96 h on the PCA score plots. These results suggest that the effects of DCP depended on exposure concentration and time. Changes in tricarboxylic cycle metabolites suggested that fish exposed to 2,4-DCP require more energy to metabolize and eliminate DCP, particularly at 96 h of exposure. A time-dependent response in the fish exposed to DCP was observed in the GC/MS data, suggesting that the higher DCP concentration had greater effects at 24 h than those observed in response to the lower concentration. In addition, several essential amino acids (arginine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, threonine, tryptophan, and valine) decreased after DCP exposure in the H group, and starvation condition and high concentration exposure of DCP could consume excess energy from amino acids.
Show more [+] Less [-]Comparison of metabolomic responses of earthworms to sub-lethal imidacloprid exposure in contact and soil tests
2019
Dani, Vivek D. | Lankadurai, Brian P. | Nagato, Edward G. | Simpson, Andre J. | Simpson, Myrna J.
Eisenia fetida earthworms were exposed to sub-lethal levels of imidacloprid for 48 h via contact filter paper tests and soil tests. After the exposure, ¹H nuclear magnetic resonance (NMR) metabolomics was used to measure earthworm sub-lethal responses by analyzing the changes in the polar metabolite profile. Maltose, glucose, malate, lactate/threonine, myo-inositol, glutamate, arginine, lysine, tyrosine, leucine, and phenylalanine relative concentrations were altered with imidacloprid exposure in soil. In addition to these metabolites (excluding leucine and phenylalanine), fumarate, ATP, inosine, betaine, scyllo-inositol, glutamine, valine, tryptophan, alanine, tyrosine, and isoleucine relative concentrations shifted with imidacloprid exposure during contact tests. Metabolite changes in E. fetida earthworms exposed to imidacloprid showed a non-linear concentration response and an upregulation in gluconeogenesis. Overall, imidacloprid exposure in soil induces a less pronounced response in metabolites glucose, maltose, fumarate, adenosine-5′-triphosphate (ATP), inosine, scyllo-inositol, lactate/threonine, and tyrosine in comparison to the response observed via contact tests. Thus, our study highlights that tests in soil can result in a different metabolic response in E. fetida and demonstrates the importance of different modes of exposure and the extent of metabolic perturbation in earthworms. Our study also emphasizes the underlying metabolic disruption of earthworms after acute sub-lethal exposure to imidacloprid. These observations should be further examined in different soil types to assess the sub-lethal toxicity of imidacloprid to soil-dwelling earthworms.
Show more [+] Less [-]The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots
2013
Xie, Xiangyu | Weiss, Dominik J. | Weng, Bosen | Liu, Jingchun | Lu, Haoliang | Yan, Chongling
The aim of this study was to evaluate short-term concentration and time effects of cadmium on Kandelia obovata (S., L.) Yong root exudation, thereby evaluating and predicting the ecophysiological effects of mangrove to heavy metals at the root level. Mature K. obovata propagules were cultivated in a sandy medium for 3 months, and then six concentrations of Cd (0, 2.5, 5, 10, 20, and 40 mg L⁻¹) were applied. After exposure time of 24 h and 7 days, respectively, the root exudates of K. obovata were collected and low molecular weight organic acids (LMWOAs) and amino acids of which were analyzed. In addition, we measured glutathione, soluble protein content, and Cd concentration in the plant. We found 10 and 15 types of LMWOAs and amino acids in root exudates of K. obovata with total concentrations ranging from 29.54 to 43.08 mg g⁻¹ dry weight (DW) roots and from 737.35 to 1,452.46 ng g⁻¹ DW roots, respectively. Both of them varied in quality and quantity under different Cd treatment strengths and exposure times. Oxalic, acetic, L-malic, tartaric acid, tyrosine, methionine, cysteine, isoleucine, and arginine were dominant. Both LMWOAs and amino acids excreted from K. obovata roots play a key role in Cd toxicity resistance. The responsiveness of amino acids was less than that of LMWOAs. We suggest that the ecological effect of root-excreted free amino acids in the rhizosphere is mainly based on the role of nutrients, supplemented with detoxification to heavy metals.
Show more [+] Less [-]Nuclear magnetic resonance-based metabolomic investigation reveals metabolic perturbations in PM2.5-treated A549 cells
2018
Huang, Dacheng | Zou, Yajuan | Abbas, Anees | Dai, Bona
Exposure to PM₂.₅ is associated with an increased risk of lung diseases, and oxidative damage is the main reason for PM₂.₅-mediated lung injuries. However, little is known about the early molecular events in PM₂.₅-induced lung toxicity. In the present study, the metabolites in PM₂.₅-treated A549 cells were examined via a robust and nondestructive nuclear magnetic resonance (NMR)-based metabolic approach to clarify the molecular mechanism of PM₂.₅-induced toxicity. NMR analysis revealed that 12 metabolites were significantly altered in PM₂.₅-treated A549 cells, including up-regulation of alanine, valine, lactate, ω-6 fatty acids, and citrate and decreased levels of gamma-aminobutyric acid, acetate, leucine, isoleucine, D-glucose, lysine, and dimethylglycine. Pathway analysis demonstrated that seven metabolic pathways which included alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, taurine and hypotaurine metabolism, arginine and proline metabolism, starch and sucrose metabolism, valine, leucine and isoleucine biosynthesis, and tricarboxylic acid cycle were mostly influenced. Our results indicate that NMR technique turns out to be a simple and reliable method for exploring the toxicity mechanism of air pollutant.
Show more [+] Less [-]Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron
2016
Petric, Ines | Karpouzas, Dimitrios G | Bru, David | Udikovic-Kolic, Nikolina | Kandeler, Ellen | Djuric, Simonida | Martin-Laurent, Fabrice
The action mode of sulfonylurea herbicides is the inhibition of the acetohydroxyacid synthase (AHAS) required for the biosynthesis of amino acids valine and isoleucine in plants. However, this enzyme is also present in a range of non-targeted organisms, among which soil microorganisms are known for their pivotal role in ecosystem functioning. In order to assess microbial toxicity of sulfonylurea herbicide nicosulfuron (NS), a tiered microcosm (Tier I) to field (Tier II) experiment was designed. Soil bacteria harboring AHAS enzyme tolerant to the herbicide nicosulfuron were enumerated, isolated, taxonomically identified, and physiologically characterized. Results suggested that application of nicosulfuron drives the selection towards NS-tolerant bacteria, with increasing levels of exposure inducing an increase in their abundance and diversity in soil. Tolerance to nicosulfuron was shown to be widespread among the microbial community with various bacteria belonging to Firmicutes (Bacillus) and Actinobacteria (Arthrobacter) phyla representing most abundant and diverse clusters. While Arthrobacter bacterial population dominated community evolved under lower (Tier II) nicosulfuron selection pressure, it turns out that Bacillus dominated community evolved under higher (Tier I) nicosulfuron selection pressure. Different NS-tolerant bacteria likewise showed different levels of sensitivity to the nicosulfuron estimated by growth kinetics on nicosulfuron. As evident, Tier I exposure allowed selection of populations able to better cope with nicosulfuron. One could propose that sulfonylureas-tolerant bacterial community could constitute a useful bioindicator of exposure to these herbicides for assessing their ecotoxicity towards soil microorganisms.
Show more [+] Less [-]