Refine search
Results 1-10 of 345
Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin Full text
2022
Fernandes, G. | Roques, O. | Lassabatère, L. | Sarles, L. | Venisseau, A. | Marchand, P. | Bedell, Jean-Philippe | LEHNA - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés [équipe IAPHY] (LEHNA IAPHY) ; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | In recent decades, stormwater management has developed to allow stormwater to infiltrate directly into the soils instead of being collected and routed to sewer systems. However, during infiltration, stormwater creates a sediment deposit at the soil surface as the result of high loads of suspended particles (including pollutants), leading to the settlement of sedimentary layers prone to colonization by plants and earthworms. This study aims to investigate the earthworm communities of a peculiar infiltration basin and investigate the influence of edaphic conditions (water content, organic matter content, pH, height of sediment) and of persistent organic pollutants (POPs: PCBs, PCDDs and PCDFs) on these earthworms. Attention was paid to their age (juveniles or adults) and their functional group (epigeic, endogeic, anecic). We found that the earthworm abundance was mostly driven by edaphic conditions, with only a slight impact of POPs, with a significant negative impact of PCBDLno for juveniles and endogeic, and PCDDs for epigeic. On the contrary, the height of the sediment and the water content are beneficial for their presence and reproduction. Furthermore, POPs contents are also linked to physicochemical parameters of the sediment. Bioaccumulation was clearly revealed in the studied site but does not differ between juveniles and adults, except for PCDDs. Conversely, BAF values seemed to vary between functional groups, except for PCBDL non-ortho. It strongly varies with the family types (PCBs versus PCCD/Fs) and between congeners within the same family, with specific strong bioaccumulation for a few congeners.
Show more [+] Less [-]Acute and mutigenerational effects of environmental concentration of the antifouling agent dichlofluanid on the mysid model, Neomysis awatschensis Full text
2022
Lee, Somyeong | Haque, Md Niamul | Rhee, Jae-Sung
A broad-spectrum fungicide, dichlofluanid is widely used in antifouling paints and agricultural pesticides. In this study, the acute and chronic effects of sublethal concentrations, namely, no observable effect concentration (NOEC) and 50% lethal concentration (LC₅₀) of dichlofluanid (1/10 NOEC, NOEC, 1/10 LC₅₀, and LC₅₀) were evaluated on the marine mysid, Neomysis awatschensis. Acute toxicity test (96 h) showed higher sensitivity to dichlofluanid in juvenile mysids (LC₅₀ 3.1 μg L⁻¹) than adults (LC₅₀ 24.5 μg L⁻¹), with lower survival rate and reduction in food consumption. Exposure with dichlofluanid considerably induced oxidative imbalance, as NOEC (0.006 μg L⁻¹ for juveniles and 0.074 μg L⁻¹ for adults) and 1/10 LC₅₀ values increased intracellular concentrations of malondialdehyde and glutathione, and the enzymatic activities of catalase and superoxide dismutase, whereas exposure to LC₅₀ value decreased the values of oxidative parameters. Enzymatic activity of acetylcholinesterase decreased considerably when exposed to LC₅₀ value. In the case of chronic effects, exposure to NOEC for 4 weeks markedly decreased the juvenile survival rate, while adults showed tolerance. Multigenerational monitoring in response to NOEC showed a significant growth retardation with an increase in intermolt duration as well as a decrease in the number of newborn mysids from females of the third generation. Consistent exposure to environmentally relevant sublethal concentrations of dichlofluanid would be detrimental to mysid individuals and the survival of the mysid population.
Show more [+] Less [-]Multigenerational exposure of the collembolan Folsomia candida to soil metals: Adaption to metal stress in soils polluted over the long term Full text
2022
Zhang, Yabing | Li, Zhu | Ke, Xin | Wu, Longhua | Christie, Peter
Multigenerational tests provide a comprehensive assessment of the long-term toxicity of pollutants. Here, the multigenerational effects of soil metal contamination on Folsomia candida were investigated over five generations (generations 1–5: F1–F5). Nine soils with varying physicochemical properties and degrees of metal pollution were studied. The selected endpoints were survival, reproduction, body size and body metal concentrations. F. candida was cultured only up to the fifth generation with high reproduction in contaminated acid soils where reproduction was at least 5 times that in neutral soils and 20 times that in calcareous soils. Correlation analysis indicated that soil pH (68.9% contribution) and cation exchange capacity (CEC, 15.4% contribution) were more important factors than pollution level affecting the reproduction of F. candida. No significant difference was observed in adult survival or adult length over five generations. The highest collembolan body Cd concentrations in soils A1-A3 were 3.15, 2.93 and 3.23 times those in F1, with similar results for body Pb. A similar trend in reproduction and juvenile length was observed with an initial decrease (p < 0.05) and then an increase (p < 0.05) over the generations in each acid soil; the opposite trend occurred in the changes in body cadmium (Cd) and lead (Pb) concentrations which increased initially (p < 0.05) and then decreased (p < 0.05) compared to the original concentrations of the first generation. The results indicate that F. candida can adapt to soil metal stress during multigenerational exposure and the adaption energy may be related to a tradeoff between reproduction or growth of juveniles and the detoxification of metals accumulated in the body. Soil properties, especially pH and CEC, had a substantial influence on the long-term survival of the collembolan in the metal-polluted soils.
Show more [+] Less [-]Toxicokinetics and toxicodynamics of plastic and metallic nanoparticles: A comparative study in shrimp Full text
2022
Zhu, Xiaopeng | Teng, Jia | Xu, Elvis Genbo | Zhao, Jianmin | Shan, Encui | Sun, Chaofan | Wang, Qing
Nanoplastic is recognized as an emerging environmental pollutant due to the anticipated ubiquitous distribution, increasing concentration in the ocean, and potential adverse health effects. While our understanding of the ecological impacts of nanoplastics is still limited, we benefit from relatively rich toxicological studies on other nanoparticles such as nano metal oxides. However, the similarity and difference in the toxicokinetic and toxicodynamic aspects of plastic and metallic nanoparticles remain largely unknown. In this study, juvenile Pacific white shrimp Litopenaeus vannamei was exposed to two types of nanoparticles at environmentally relative low and high concentrations, i.e., 100 nm polystyrene nanoplastics (nano-PS) and titanium dioxide nanoparticles (nano-TiO₂) via dietary exposure for 28 days. The systematic toxicological evaluation aimed to quantitatively compare the accumulation, excretion, and toxic effects of nano-PS and nano-TiO₂. Our results demonstrated that both nanoparticles were ingested by L. vannamei with lower egestion of nano-TiO₂ than nano-PS. Both nanoparticles inhibited the growth of shrimps, damaged tissue structures of the intestine and hepatopancreas, disrupted expression of immune-related genes, and induced intestinal microbiota dysbiosis. Nano-PS exposure caused proliferative cells in the intestinal tissue, and the disturbance to the intestinal microbes was also more serious than that of nano-TiO₂. The results indicated that the effect of nano-PS on the intestinal tissue of L. vannamei was more severe than that of nano-TiO₂ with the same particle size. The study provides new theoretical basis of the similarity and differences of their toxicity, and highlights the current lack of knowledge on various aspects of absorption, distribution, metabolism, and excretion (ADME) pathways of nanoplastics.
Show more [+] Less [-]Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene Full text
2021
DeBofsky, Abigail | Xie, Yuwei | Challis, Jonathan K. | Jain, Niteesh | Brinkmann, Markus | Jones, Paul D. | Giesy, John P.
The microbiome has been described as an additional host “organ” with well-established beneficial roles. However, the effects of exposures to chemicals on both structure and function of the gut microbiome of fishes are understudied. To determine effects of benzo[a]pyrene (BaP), a model persistent organic pollutant, on structural shifts of gut microbiome in juvenile fathead minnows (Pimephales promelas), fish were exposed ad libitum in the diet to concentrations of 1, 10, 100, or 1000 μg BaP g⁻¹ food, in addition to a vehicle control, for two weeks. To determine the link between exposure to BaP and changes in the microbial community, concentrations of metabolites of BaP were measured in fish bile and 16S rRNA amplicon sequencing was used to evaluate the microbiome. Exposure to BaP only reduced alpha-diversity at the greatest exposure concentrations. However, it did alter community composition assessed as differential abundance of taxa and reduced network complexity of the microbial community in all exposure groups. Results presented here illustrate that environmentally-relevant concentrations of BaP can alter the diversity of the gut microbiome and community network connectivity.
Show more [+] Less [-]The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms Full text
2021
Jacob, Raquel Sampaio | Araújo, Cristiano V.M. | Santos, Lucilaine Valéria de Souza | Moreira, Victor Rezende | Lebron, Yuri Abner Rocha | Lange, Liséte Celina
The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms Full text
2021
Jacob, Raquel Sampaio | Araújo, Cristiano V.M. | Santos, Lucilaine Valéria de Souza | Moreira, Victor Rezende | Lebron, Yuri Abner Rocha | Lange, Liséte Celina
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC₅₀: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels.
Show more [+] Less [-]The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms Full text
2021
Sampaio Jacob, Raquel | Araújo, Cristiano V. M. | Santos, Lucilaine Valéria Souza de | Rezende Moreira, Victor | Rocha Lebron, Yuri Abner | Lamge, Liséte Celina | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil) | Conselho Nacional das Fundaçôes Estaduais de Amparo à Pesquisa (Brasil) | Fundação de Amparo à Pesquisa do Estado de São Paulo Minas Gerais | Universidade Federal de Minas Gerais | Ministerio de Ciencia, Innovación y Universidades (España) | Agencia Estatal de Investigación (España) | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC50: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels. | This research was funded by: Coordination of Superior Level Staff Improvement (CAPES); National Council for Scientific and Technological Development (CNPq); Foundation for Research Support of the State of Minas Gerais (FAPEMIG) and the Federal University of Minas Gerais (UFMG). C.V.M. Araújo received the Ramón y Cajal contract (RYC-2017-22324) from the Spanish Ministry of Science and Innovation. | Peer reviewed
Show more [+] Less [-]Multigeneration toxicity of Geunsami® (a glyphosate-based herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels Full text
2021
Wee, June | Lee, Yun-Sik | Kim, Yongeun | Lee, Yong Ho | Lee, Sung-Eun | Hyun, Seunghun | Cho, Kijong
Glyphosate-based herbicide (GBH) is the most widely used herbicide worldwide and has long been considered to have significantly low toxicity to non-target soil invertebrates based on short-term toxicity tests (<56 d). However, long-term GBH toxicity assessment is necessary as GBH is repeatedly applied in the same field annually because of the advent of glyphosate-resistant crops. In this study, a multigeneration test was conducted where Allonychiurus kimi (Collembola) was exposed to GBH for three generations (referred to as F₀, F₁, and F₂) to evaluate the long-term toxic effect. The endpoints used were adult survival and juvenile production for the individual level toxicity assessment. Phospholipid profile and population age structure were the endpoints used for sub-individual and population levels, respectively. GBH was observed to have no negative effects on adult survivals of all generations, but juvenile production was found to decrease in a concentration-dependent manner, with EC₅₀s being estimated as 572.5, 274.8, and 59.8 mg a.i. kg⁻¹ in the F₀, F₁, and F₂ generations, respectively. The age structure of A. kimi population produced in the test of all generations was altered by GBH exposure, mainly because of the decrease in the number of young juveniles. Further, differences between the phospholipid profiles of the control and GBH treatments became apparent over generations, with PA 16:0, PA 12:0, and PS 42:0 lipids not being detected at the highest concentration of 741 mg kg⁻¹ in F₂. Considering all our findings from sub-individual to population levels, repeated and long-term use of GBH could have significantly higher negative impacts on non-target soil organisms than expected.
Show more [+] Less [-]Chlorpyrifos and persistent organic pollutants in feathers of the near threatened Olrog’s Gull in southeastern Buenos Aires Province, Argentina Full text
2021
Quadri-Adrogué, Agustina | Seco Pon, Juan Pablo | García, Germán Oscar | Castano, Melina Vanesa | Copello, Sofia | Favero, Marco | Beatriz Miglioranza, Karina Silvia
The use of bird feathers to assess environmental contamination has steadily increased in ecotoxicological monitoring programs over the past decade. The Olrog’s Gull (Larus atlanticus) is a species endemic to the Atlantic coast of southern South America, constituting one of the three threatened gull species listed in the entire American continent. The aim of this study was to assess the exposure to Persistent Organic Pollutants (POPs) and chlorpyrifos in the Near Threatened Olrog’s Gull through the analysis of body feathers sampled at the Mar Chiquita coastal lagoon, the main wintering area of the species in Argentina, controlling for sex and age class. Chlorpyrifos showed the highest concentrations among all contaminants and groups of individuals (X¯ = 263 ng g⁻¹), while among POPs the concentration of organochlorine pesticides was higher than polychlorinated biphenyls and polybrominated diphenyl ethers, likely indicating the current use of these agricultural contaminant in the region. The highest values of total POP concentrations (males X¯ = 280 ng g⁻¹, females X¯ = 301 ng g⁻¹) were found in juvenile gulls, likely as a consequence of the incorporation of pollutants during the breeding season. Subadult and adult birds showed difference between sexes in the concentration of contaminants, with higher levels in males than females. The results highlight the need to include birds of different sex and age classes in order to better understand the variation in pollutants loads. The present study provides relevant information to improve the conservation status of the Olrog’s Gull and new insights about the environmental health of the Mar Chiquita coastal lagoon, Argentina, a MAB-UNESCO World Biosphere Reserve. However, there is a continued need for long-term monitoring programs focusing on this threatened species to understand the effects of pollutants on its population.
Show more [+] Less [-]Feeding behavior responses of a juvenile hybrid grouper, Epinephelus fuscoguttatus♀ × E. lanceolatus♂, to microplastics Full text
2021
Xu, Jiayi | Li, Daoji
In recent decades, microplastic (MP) pollution has become a severe problem in aquatic environments. Yet the behavioral and selective responses of fish toward different types of MPs remain unclear. We therefore conducted laboratory-based video observations to investigate the behavioral responses of hybrid grouper juveniles (tiger grouper Epinephelus fuscoguttatus♀ × giant grouper E. lanceolatus♂) to eight different types of MPs. We observed four distinct feeding behaviors: (i) normal ingestion of MPs, which rarely occurred (0%–6%); (ii) pursuit, capture, and tasting of MPs, after which MPs were quickly spat out; (iii) detection and rejection of MPs without attack; and (iv) no significant response to MPs. Our results indicate that juveniles can distinguish MPs as inedible particle and behave differently between MPs with different sizes, colors, and materials, primarily using visual and gustatory senses. Notably, 50%–90% of MP rejection events occurred before capture. Juveniles spent double the time evaluating large nylon particles than they did evaluating large polyvinyl chloride particles before capture, but half the time tasting after capture. Although we observed no sub-lethal or lethal effects of MPs, we conclude that the presence of MPs can still have an impact on groupers in aquaculture. For instance, in the densely stocked conditions of an aquaculture unit, the fish could lose visibility and can inadvertently ingest MPs, thus suffering from their toxic impacts.
Show more [+] Less [-]Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio Full text
2021
Sant, Karilyn E. | Annunziato, Kate | Conlin, Sarah | Teicher, Gregory | Chen, Phoebe | Venezia, Olivia | Downes, Gerald B. | Park, Yeonhwa | Timme-Laragy, Alicia R.
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental contaminant previously found in consumer surfactants and industrial fire-fighting foams. PFOS has been widely implicated in metabolic dysfunction across the lifespan, including diabetes and obesity. However, the contributions of the embryonic environment to metabolic disease remain uncharacterized. This study seeks to identify perturbations in embryonic metabolism, pancreas development, and adiposity due to developmental and subchronic PFOS exposures and their persistence into later larval and juvenile periods. Zebrafish embryos were exposed to 16 or 32 μM PFOS developmentally (1–5 days post fertilization; dpf) or subchronically (1–15 dpf). Embryonic fatty acid and macronutrient concentrations and expression of peroxisome proliferator-activated receptor (PPAR) isoforms were quantified in embryos. Pancreatic islet morphometry was assessed at 15 and 30 dpf, and adiposity and fish behavior were assessed at 15 dpf. Concentrations of lauric (C12:0) and myristic (C14:0) saturated fatty acids were increased by PFOS at 4 dpf, and PPAR gene expression was reduced. Incidence of aberrant islet morphologies, principal islet areas, and adiposity were increased in 15 dpf larvae and 30 dpf juvenile fish. Together, these data suggest that the embryonic period is a susceptible window of metabolic programming in response to PFOS exposures, and that these early exposures alone can have persisting effects later in the lifecourse.
Show more [+] Less [-]