Refine search
Results 1-10 of 28
Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure
2020
Zeng, Taotao | Mo, Guanhai | Hu, Qing | Wang, Guohua | Liao, Wei | Xie, Shuibo
The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10–50 μM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%–96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 μM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.
Show more [+] Less [-]The prolonged disruption of a single-course amoxicillin on mice gut microbiota and resistome, and recovery by inulin, Bifidobacterium longum and fecal microbiota transplantation
2020
Lin, Huai | Wang, Qing | Yuan, Meng | Liu, Lei | Chen, Zeyou | Zhao, Yanhui | Das, Ranjit | Duan, Yujing | Xu, Ximing | Xue, Yingang | Luo, Yi | Mao, Daqing
The usages of antibiotics in treating the pathogenic infections could alter the gut microbiome and associated resistome, causing long term adverse impact on human health. In this study, mice were treated with human-simulated regimen 25.0 mg kg⁻¹ of amoxicillin for seven days, and their gut microbiota and resistome were characterized using the 16S rRNA amplicons sequencing and the high-throughput qPCR, respectively. Meanwhile, the flora restorations after individual applications of inulin, Bifidobacterium longum (B. longum), and fecal microbiota transplantation (FMT) were analyzed for up to 35 days. The results revealed the prolonged negative impact of single course AMX exposure on mice gut microbiota and resistome. To be specific, pathobionts of Klebsiella and Escherichia-Shigella were significantly enriched, while prebiotics of Bifidobacterium and Lactobacillus were dramatically depleted. Furthermore, β-lactam resistance genes and efflux resistance genes were obviously enriched after amoxicillin exposure. Compared to B. longum, FMT and inulin were demonstrated to preferably restore the gut microbiota via reconstituting microbial community and stimulating specific prebiotic respectively. Such variation of microbiome caused their distinct alleviations on resistome alteration. Inulin earned the greatest elimination on AMX induced ARG abundance and diversity enrichment. FMT and B. longum caused remove of particular ARGs such as ndm-1, blaPER. Network analysis revealed that most of the ARGs were prone to be harbored by Firmicutes and Proteobacteria. In general, gut resistome shift was partly associated with the changing bacterial community structures and transposase and integron. Taken together, these results demonstrated the profound disruption of gut microbiota and resistome after single-course amoxicillin treatment and different restoration by inulin, B. longum and FMT.
Show more [+] Less [-]Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1
2012
Zhang, Dong | Zhu, Lizhong
The sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1 (PYR-1) in the presence of nonionic surfactant Tween 80 were investigated toward a better understanding that how surfactants can affect biodegradation of hydrophobic organic compounds. The results indicated that Tween 80 can promote the removal, sorption and biodegradation of pyrene depending on the surfactant concentration, of which the most significant promotion of biodegradation was achieved at critical micelle concentration of Tween 80 with an improvement of 22.4%. A highly positive correlation (P<0.0001) was observed between the biodegradation and sorption of pyrene with the presence of Tween 80. Biosorption experiments showed the same trends as biodegradation and further illustrated the improved biodegradation of pyrene was mainly due to surfactant-facilitated sorption. The regularly changes of cell surface hydrophobicity suggested formation of more hydrophobic surface caused by surfactant sorption lead to stimulation of pyrene sorption.
Show more [+] Less [-]Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, “AI001, and AI002” mediate cadmium translocation and phytoremediation
2022
Ullah, Ihsan | Mateen, Aisha | Ahmad, Mian Afaq | Munir, Iqbal | Iqbal, Aqib | Alghamdi, Khalid M.S. | Al-Solami, Habeeb M. | Siddiqui, Muhammad Faisal
Contamination of heavy metals is a serious threat, which causes threats to the environment. Our study aimed to determine the role of endophytic bacteria in Cd phytoremediation and heavy metal ATPase gene expression. Cadmium (Cd) resistant endophytic bacteria were isolated from Solanum nigrum on LB agar plates, contaminated with 0–30 mg/L Cd. The phosphate solubilization and indole-3-acetic acid (IAA) production of endophytes were estimated by growing them on Pikovskaya agar medium and GC-MS analysis, respectively. An experiment in a pot was performed to evaluate the effects of bacteria on rice plants contaminated with 5–25 mg/L of Cd. Expression of Cd response genes was quantified through qRT–PCR and Cd translocation from one part to another part of the plant was measured through the ICP. BLAST alignment of 16 S-rDNA gene sequences confirmed the bacterial isolates as Serratia sp. AI001 and Klebsiella sp. Strain AI002. Both strains tolerated Cd up to 25 mg/L and produced 27–30 μg/mL of IAA. Inoculation of AI001 and AI002 improved plant growth dynamics (i.e., plant length, biomass, chlorophyll contents), relieved electrolyte leakage, and improved reduced glutathione significantly (P < 0.05). The inoculation of AI001 and AI002 significantly (P < 0.05) induced the expression of heavy metal ATPase genes ie., “HMA2, HMA3, and HMA4” and Cd translocation compared to uninoculated plants. Both AI001 and AI002 exhibited very prominent plant-growth-promoting and Cd phytoremediation properties. The results revealed that isolates also contributed a lot to the expression of rice plant heavy metal ATPase genes and in the Cd translocation in the plant.
Show more [+] Less [-]Microbiome and antibiotic resistance profiling in submarine effluent-receiving coastal waters in Croatia
2022
Kvesić, Marija | Kalinić, Hrvoje | Dželalija, Mia | Šamanić, Ivica | Andričević, Roko | Maravić, Ana
Wastewater treatment plant (WWTP) effluents are pointed as hotspots for the introduction of both commensal and pathogenic bacteria as well as their antibiotic resistance genes (ARGs) in receiving water bodies. For the first time, the effect of partially treated submarine effluents was explored at the bottom and surface of the water column to provide a comprehensive overview of the structure of the microbiome and associated AR, and to assess environmental factors leading to their alteration. Seawater samples were collected over a 5-month period from submarine outfalls in central Adriatic Sea, Croatia. 16S rRNA amplicon sequencing was used to establish taxonomic and resistome profiles of the bacterial communities. The community differences observed between the two discharge areas, especially in the abundance of Proteobacteria and Firmicutes, could be due to the origin of wastewaters treated in WWTPs and the limiting environmental conditions such as temperature and nutrients. PICRUSt2 analysis inferred the total content of ARGs in the studied microbiomes and showed the highest abundance of resistance genes encoding multidrug efflux pumps, such as MexAB-OprM, AcrEF-TolC and MdtEF-TolC, followed by the modified peptidoglycan precursors, transporter genes encoding tetracycline, macrolide and phenicol resistance, and the bla operon conferring β-lactam resistance. A number of pathogenic genera introduced by effluents, including Acinetobacter, Arcobacter, Bacteroides, Escherichia-Shigella, Klebsiella, Pseudomonas, and Salmonella, were predicted to account for the majority of efflux pump-driven multidrug resistance, while Acinetobacter, Salmonella, Bacteroides and Pseudomonas were also shown to be the predominant carriers of non-efflux ARGs conferring resistance to most of nine antibiotic classes. Taken together, we evidenced the negative impact of submarine discharges of treated effluents via alteration of physico-chemical characteristics of the water column and enrichment of bacterial community with nonindigenous taxa carrying an arsenal of ARGs, which could contribute to the further propagation of the AR in the natural environment.
Show more [+] Less [-]Occurrence and distribution of Carbapenem-resistant Enterobacterales and carbapenemase genes along a highly polluted hydrographic basin
2022
Teixeira, Pedro | Tacão, Marta | Henriques, Isabel
We determined the distribution and temporal variation of Carbapenem Resistant Enterobacterales (CRE), carbapenemase-encoding genes and other antibiotic resistance genes (ARGs) in a highly polluted river (Lis River; Portugal), also assessing the potential influence of water quality to this distribution. Water samples were collected in two sampling campaigns performed one year apart (2018/2019) from fifteen sites and water quality was analyzed. CRE were isolated and characterized. The abundance of four ARGs (blaNDM, blaKPC, tetA, blaCTX₋M), two Microbial Source Tracking (MST) indicators (HF183 and Pig-2-Bac) and the class 1 integrase gene (IntI1) was measured by qPCR. confirmed the poor quality of the Lis River water, particularly in sites near pig farms. A collection of 23 CRE was obtained: Klebsiella (n = 19), Enterobacter (n = 2) and Raoultella (n = 2). PFGE analysis revealed a clonal relationship between isolates obtained in different sampling years and sites. All CRE isolates exhibited multidrug resistance profiles. Klebsiella and Raoultella isolates carried blaKPC while Enterobacter harbored blaNDM. Conjugation experiments were successful for only four Klebsiella isolates. All ARGs were detected by qPCR on both sampling campaigns. An increase in ARGs and IntI1 abundances was detected in sites located downstream of wastewater treatment plants. Strong correlations were observed between blaCTX₋M, IntI1 and the human-pollution marker HF183, and also between tetA and the pig-pollution marker Pig-2-bac, suggesting that both human- and animal-derived pollution in the Lis River are a potential source of ARGs. Plus, water quality parameters related to eutrophication and land use were significantly correlated with ARGs abundances. Our findings demonstrated that the Lis River encloses high levels of antibiotic resistant bacteria and ARGs, including CRE and carbapenemase-encoding genes. Overall, this study provides a better understanding on the impacts of water pollution resulting from human and animal activities on the resistome of natural aquatic systems.
Show more [+] Less [-]Heat stress during late gestation disrupts maternal microbial transmission with altered offspring’s gut microbial colonization and serum metabolites in a pig model
2020
He, Jianwen | Zheng, Weijiang | Tao, Chengyuan | Guo, Huiduo | Xue, Yongqiang | Zhao, Ruqian | Yao, Wen
Heat stress (HS) during gestation has been associated with negative outcomes, such as preterm birth or postnatal metabolic syndromes. The intestinal microbiota is a unique ecosystem playing an essential role in mediating the metabolism and health of mammals. Here we hypothesize late gestational HS alters maternal microbial transmission and structures offspring’s intestinal microbiota and serum metabolic profiles. Our results show maternal HS alters bacterial β-diversity and composition in sows and their piglets. In the maternal intestine, genera Ruminococcaceae UCG-005, [Eubacterium] coprostanoligenes group and Halomonas are higher by HS (q < 0.05), whereas the populations of Streptococcus, Bacteroidales RF16 group_norank and Roseburia are decreased (q < 0.05). In the maternal vagina, HS mainly elevates the proportions of phylum Bacteroidetes and Fusobacteria (q < 0.05), whereas reduces the population of Clostridiales Family XI (q < 0.05). In the neonatal intestine, maternal HS promotes the population of Proteobacteria but reduces the relative abundance of Firmicutes (q < 0.05). Moreover, the core Operational taxonomic units (OTU) analysis indicates the proportions of Clostridium sensu stricto 1, Romboutsia and Turicibacter are decreased by maternal HS in the intestinal and vaginal co-transmission, whereas that of phylum Proteobacteria and Epsilonbacteraeota, such as Escherichia-Shigella, Klebsiella, Acinetobacter, and Comamonas are increased in both the intestinal and vaginal co-transmission and the vagina. Additionally, Aeromonas is the only genus that is transmitted from environmental sources. Lastly, we evaluate the importance of neonatal differential OTU for the differential serum metabolites. The results indicate Acinetobacter significantly contributes to the differences in the adrenocorticotropic hormone (ACTH) and glucose levels due to HS (P < 0.05). Further, Stenotrophomonas is the most important variable for Cholesterol, low-density lipoprotein (LDL), diamine oxidase (DAO), blood urea nitrogen (BUN) and 5-hydroxytryptamine (5-HT) (P < 0.10). Overall, our data provides evidence for the maternal HS in establishing the neonatal microbiota via affecting maternal transmission, which in turn affects the maintenance of metabolic health.
Show more [+] Less [-]Vancomycin exposure caused opportunistic pathogens bloom in intestinal microbiome by simulator of the human intestinal microbial ecosystem (SHIME)
2020
Liu, Lei | Wang, Qing | Wu, Xinyan | Qi, Hongmei | Das, Ranjit | Lin, Huai | Shi, Jingliang | Wang, Siyi | Yang, Jing | Xue, Yingang | Mao, Daqing | Luo, Yi
Antibiotics are emerging organic pollutants posing high health risks to humans by causing human intestinal microbial disorders with increasing abundances of opportunistic pathogens, and fecal microbiota transplantation (FMT) has been confirmed to restore the dysbiosis of gut flora in many kinds of intestinal disease. However, to date, few studies have focused on the bloomed opportunistic pathogens associated human disease-related pathways as well as antibiotic resistance genes (ARGs) after vancomycin exposure, and there is limited information on using FMT for restoration of intestinal microbiome affected by antibiotics. Therefore, this study investigated effects of vancomycin on the opportunistic pathogens, human disease-related pathways as well as ARGs in human gut, and the restoration of intestinal microbiome by FMT. Results indicated that vancomycin treatment substantially increased human disease-related pathways and decreased abundances of ARGs. Besides, the bloomed opportunistic pathogens including Achromobacter, Klebsiella, and Pseudomonas, caused by vancomycin exposure, were positively correlated with human disease-related pathways. The microbiota abundance and genes of human disease-related pathways and antibiotic resistance showed a remarkable return towards baseline after FMT, but not for natural recovery. These findings suggest that impacts of vancomycin on human gut are profound and FMT will be a promising strategy in clinical application that can restore the dysbiosis of gut microbiota, which may be valuable for directing future work.
Show more [+] Less [-]A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste
2020
Urbanek, Aneta K. | Rybak, Justyna | Wrobel, Magdalena | Leluk, Karol | Mirończuk, Aleksandra M.
Recently it was demonstrated that mealworm (Tenebrio molitor) larvae consume and biodegrade polystyrene. Thus, in this study a breeding investigation with various types of polystyrene was performed to follow the changes in the gut microbiome diversity. Polystyrene used for packaging purposes (PSp) and expanded polystyrene (EPS) were perceived as more favorable and attacked more frequently by mealworms compared to raw polystyrene (PS) and material commercially available for parcels (PSp). Although our studies showed that larvae could bite and chew selected materials, they are not able to degrade and use them for consumption purposes. In a next-generation sequencing experiment, among all samples, seven classes, Gammaproteobacteria, Bacilli, Clostridia, Acidobacteria, Actinobacteria, Alphaproteobacteria and Flavobacteria, were indicated as the most abundant, whereas the predominant genera were Enterobacter, Lactococcus and Enterococcus. Additionally, we isolated three bacteria strains able to use diverse types of bioplastic as a sole carbon source. The strains with biodegradable activity against bioplastic were identified as species of the genera Klebsiella, Pseudomonas and Serratia. The presence of a bacterial strain able to degrade bioplastic may suggest a potential niche for further investigations.
Show more [+] Less [-]Metagenomic analysis of tarball-associated bacteria from Goa, India
2019
Fernandes, Clafy | Kankonkar, Harshada | Meena, Ram Murti | Menezes, Gilda | Shenoy, Belle Damodara | Khandeparker, Rakhee
The beaches of Goa state in India are frequently polluted with tarballs, specifically during pre-monsoon and monsoon seasons. Tarballs contain hydrocarbons, including polycyclic aromatic hydrocarbons, which pose significant environmental risks. Microbes associated with tarballs reportedly possess capabilities to degrade toxic hydrocarbons present in tarballs. In this study, bacterial diversity associated with tarballs from Vagator and Morjim beaches of north Goa was analysed based on V3–V4 regions of 16S rRNA gene sequenced using Illumina Miseq Platform. The Proteobacterial members were dominant in both Vagator (≥85.5%) and Morjim (≥94.0%) samples. Many of the identified taxa have been previously reported as hydrocarbon degraders (e.g. Halomonas, Marinobacter) or possible human pathogens (e.g. Acinetobacter, Klebsiella, Rhodococcus, Staphylococcus, Vibrio). This is the first study reported on a metagenomic analysis of bacteria associated with tarballs from Goa.
Show more [+] Less [-]