Refine search
Results 1-8 of 8
Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia
2020
Tang, Jiao | Li, Jun | Mo, Yangzhi | Safaei Khorram, Mahdi | Chen, Yingjun | Tang, Jianhui | Zhang, Yanlin | Song, Jianzhong | Zhang, Gan
Humic-like substances (HULIS) are complex mixtures that are highly associated with brown carbon (BrC) and are important components of biomass burning (BB) emissions. In this study, we investigated the light absorption, emission factors (EFs), and amounts of HULIS emitted from the simulated burning of 27 types of regionally important rainforest biomass in Southeast Asia. We observed that HULIS had a high mass absorption efficiency at 365 nm (MAE₃₆₅), with an average value of 2.6 ± 0.83 m² g⁻¹ C. HULIS emitted from BB accounted for 65% ± 13% of the amount of water-soluble organic carbon (WSOC) and 85% ± 10% of the light absorption of WSOC at 365 nm. The EFs of HULIS from BB averaged 2.3 ± 2.1 g kg⁻¹ fuel, and the burning of the four vegetation subtypes (herbaceous plants, shrubs, evergreen trees, and deciduous trees) exhibited different characteristics. The differences in EFs among the subtypes were likely due to differences in lignin content in the vegetation, the burning conditions, or other factors. The light absorption characteristics of HULIS were strongly associated with the EFs. The annual emissions (minimum–maximum) of HULIS from BB in this region in 2016 were 200–371 Gg. Furthermore, the emissions from January to April accounted for 99% of the total annual emissions of HULIS, which is likely the result of the burning activities during this season. The most significant emission regions were Cambodia, Burma, Thailand, and Laos. This study, which evaluated emissions of HULIS by simulating open BB, contributes to a better understanding of the light-absorbing properties and regional budgets of BrC in this region.
Show more [+] Less [-]New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals
2021
Yan, Xing | Zang, Zhou | Liang, Zhen | Luo, Nana | Ren, Rongmin | Cribb, Maureen | Li, Zhanqing
The space-borne measured fine-mode aerosol optical depth (fAOD) is a gross index of column-integrated anthropogenic particulate pollutants, especially over the populated land. The fAOD is the product of the AOD and the fine-mode fraction (FMF). While there exist numerous global AOD products derived from many different satellite sensors, there have been much fewer, if any, global FMF products with a quality good enough to understand their spatiotemporal variations. This is key to understanding the global distribution and spatiotemporal variations of air pollutants, as well as their impacts on global environmental and climate changes. Modifying our newly developed retrieval algorithm to the latest global-scale Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product (Collection 6.1), a global 10-year FMF product is generated and analyzed here. We first validate the product through comparisons with the FMF derived from Aerosol Robotic Network (AERONET) measurements. Among our 169,313 samples, the satellite-derived FMFs agreed with the AERONET spectral deconvolution algorithm (SDA)-retrieved FMFs with a root-mean-square error (RMSE) of 0.22. Analyzed using this new product are the global patterns and interannual and seasonal variations of the FMF over land. In general, the FMF is large (>0.80) over Mexico, Myanmar, Laos, southern China, and Africa and less than 0.5 in the Sahelian and Sudanian zones of northern Africa. Seasonally, higher FMF values occur in summer and autumn. The linear trend in the satellite-derived and AERONET FMFs for different countries was explored. The upward trend in the FMFs was particularly strong over Australia since 2008. This study provides a new global view of changes in FMFs using a new satellite product that could help improve our understanding of air pollution around the world.
Show more [+] Less [-]Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR
2011
Chanpiwat, Penradee | Sthiannopkao, Suthipong | Cho, Kyung Hwa | Kim, Kyoung-Woong | San, Vibol | Suvanthong, Boukeo | Vongthavady, Chantha
Arsenic and other trace element concentrations were determined for tube-well water collected in the Lao PDR provinces of Attapeu, Bolikhamxai, Champasak, Savannakhet, Saravane, and Vientiane. Water samples, especially from floodplain areas of central and southern Laos, were significantly contaminated not only with As, but with B, Ba, Mn, U, and Fe as well. Total As concentrations ranged from <0.5μgL⁻¹ to 278μgL⁻¹, with over half exceeding the WHO guideline of 10μgL⁻¹. 46% of samples, notably, were dominated by As(III). Samples from Vientiane, further north, were all acceptable except on pH, which was below drinking water limits. A principal component analysis found associations between general water characteristics, As, and other trace elements. Causes of elevated As concentrations in Lao tube wells were considered similar to those in other Mekong River countries, particularly Cambodia and Vietnam, where young alluvial aquifers give rise to reducing conditions.
Show more [+] Less [-]First evidence of association between past environmental exposure to dioxin and DNA methylation of CYP1A1 and IGF2 genes in present day Vietnamese population
2018
Giuliani, Cristina | Biggs, David | Nguyen, Thanh Tin | Marasco, Elena | De Fanti, Sara | Garagnani, Paolo | Le Phan, Minh Triet | Nguyễn, Viết Nhân | Luiselli, Donata | Romeo, Giovanni
During the Vietnam War, the United States military sprayed over 74 million litres of Agent Orange (AO) to destroy forest cover as a counterinsurgency tactic in Vietnam, Laos and Cambodia. The main ingredient was contaminated by 2,3,7,8-tetrachlorodibenzo-paradioxin (TCDD). DNA methylation (DNAm) differences are potential biomarker of environmental toxicants exposure. The aim of this study was to perform a preliminary investigation of the DNAm levels from peripheral blood of the present-day Vietnamese population, including individuals whose parents, according to historical data, were exposed to AO/TCDD during the war. 94 individuals from heavily sprayed areas (cases) and 94 individuals from non-sprayed areas (controls) were studied, and historical data on alleged exposure of parents collected. 94 cases were analysed considering those whose father/parents participated in the war (N = 29) and considering the place of residence of both parents (64 living in sprayed areas versus 30 in non-contaminated areas). DNAm levels in CYP1A1 and IGF2 genes were measured (MALDI-TOF technology). The analyses showed that: 1) one CpG site in the CYP1A1 and one in the IGF2 gene showed significant differences in DNAm levels between cases and controls; 2) the CYP1A1 region resulted to be hypomethylated (in 9 out of 16 sites/units; p-val<0.01) in 29 individuals whose father/parents participated in the war in the spray zones; 3) we showed that the place of residence of both parents influenced methylation levels of the CYP1A1 and IGF2 genes (p-val<0.05). In conclusion this study indicates that past environmental exposure to dioxin (AO/TCDD) shapes the DNAm profile of CYP1A1 and that the place of living for parents in former spray zones influences DNAm of CYP1A1 and IGF2 genes. These results open the way to new applications of DNAm as potential biomarker(s) of past human exposure to dioxin.
Show more [+] Less [-]Sedimentary PBDEs in urban areas of tropical Asian countries
2013
Kwan, Charita S. | Takada, Hideshige | Mizukawa, Kaoruko | Saha, Mahua | Rinawati, | Santiago, Evangeline C.
Polybrominated diphenyl ethers (PBDEs) were measured in surface sediment samples collected from urban canals or rivers in Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, Malaysia and Japan. The total PBDE concentrations in the sediments ranged from 0.83 to 3140ng/g dry wt. BDE-209 was predominant, ranging from 43% to 97% of total PBDEs, followed by nona-BDEs and some detectable concentrations of BDEs 47, 49, 99, 100, 153, 154 and 183. Sedimentary PBDE levels in Malaysia, Cambodia, the Philippines and Thailand were generally higher than those reported for highly industrialized countries. Spatial distribution of PBDEs indicated that inland sources may impact coastal areas. The presence of BDE congeners which are not contained in technical mixtures and the higher proportions of nona-BDEs relative to BDE-209 in the sediments were identified as indicators of debromination. BDE-209 was possibly debrominated under anaerobic conditions in some of the sediment samples.
Show more [+] Less [-]Environmental degradation in ASEAN: assessing the criticality of natural resources abundance, economic growth and human capital
2021
Nathaniel, Solomon Prince
The ASEAN countries have enjoyed significant economic advancement over the years. The region is also blessed with lots of natural resources. However, natural resource abundance and economic growth could contribute to environmental deterioration, especially when the exploration and consumption of natural resource is not sustainable. This study has a maiden attempt to constitute the dynamic linkages between natural resources, human capital, economic growth, and ecological footprint (EF) in ASEAN. The Augmented Mean Group (an advanced econometric estimator) is adopted for empirical analysis over the period 1990 to 2016. The findings confirm the adverse effect of economic growth and natural resource on environmental quality. Human capital, though with a negative coefficient, is not efficient in mitigating environmental degradation in ASEAN. The country-wise results affirm that economic growth intensifies environmental degradation in all the countries, and the outcome was consistent with the dynamic OLS results. Further findings from the country-wise results suggest that natural resource is not harmful in Laos PDR and Thailand, but constitute environmental deterioration in the other countries. Finally, a feedback causality is discovered between natural resource and economic growth, and between human capital and economic growth. The limitations of the study and directions for future research have been highlighted along with relevant policy directions.
Show more [+] Less [-]Vegetation dynamics and their relationships with climatic factors in the “Golden Triangle” region
2022
Zhu, Yaping | Zhao, Juchao | Lei, Pifeng | Yang, Kun | Zhang, Shaohua | Yin, Xiaoxue | Jiang, Yan
The “Golden Triangle” is located on the border between Myanmar, Laos, and Thailand, and slash-and-burn cultivation is an ancient and typical land type in this region. With the development of the “The Belt and Road” strategy of China and the climate change, the vegetation information is bound to change intensively under the combined influence of alternative plantation projects and economic policies. Here we used MOD13Q1-normalized differential vegetation index (NDVI) and meteorological data to analyze the variation of vegetation coverage and its correlation with climatic factors (temperature and precipitation) during the period of 2000–2018 by using trend analysis, stability analysis, and partial correlation analysis. The results showed that the overall vegetation coverage of this region exerted the trend of improvement and became more stable over time. Spatially, the agglomeration degree became weaker as time goes during 2000–2018. The precipitation was more closely correlated with NDVI than temperature, indicating that precipitation could be the main limiting factor influencing vegetation change in this area. The correlation between NDVI and climatic factors exhibited differences among different seasons, with NDVI being less correlated with temperature and precipitation in spring and summer and more correlated with them in autumn and winter. Investigating the long-term vegetation coverage of this region and analyzing the trend of climate change is beneficial to understand the development trend of the ecological environment and resource potential in this region. Simultaneously, it can provide a favorable ecological evaluation for The Belt and Road strategy and provide important scientific suggestions and guidance for the sustainable development of ecosystems and human society under the drastic environmental changes.
Show more [+] Less [-]PBDEs in leachates from municipal solid waste dumping sites in tropical Asian countries: phase distribution and debromination
2013
Kwan, Charita S. | Takada, Hideshige | Mizukawa, Kaoruko | Torii, Maiko | Koike, Tatsuya | Yamashita, Rei | Rinawati, | Saha, Mahua | Santiago, Evangeline C.
Polybrominated diphenyl ethers (PBDEs) are extensively used as flame retardants in many consumer products, and leachates from landfills have been identified as one of the possible sources of PBDEs in the environment. Meanwhile, the unprecedented economic and population growths of some Asian countries over the last decade have led to significant increases in the amount of waste containing PBDEs in that region. This study investigates the status of PBDEs in leachates from municipal solid waste dumping sites (MSWDS) in tropical Asian countries. A total of 46 PBDE congeners were measured, both in the adsorbed (n = 24) and dissolved (n = 16) phases, in leachate samples collected, from 2002 to 2010, from ten MSWDS distributed among the eight countries of Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, and Malaysia. PBDEs were predominantly found in the adsorbed phase. Partitioning of PBDEs in the dissolved phase was associated with the presence of dissolved organic matter; the apparent organic carbon-normalized partition coefficients (K′ₒc) of the BDE congeners were lower by two to four orders of magnitude than the K ₒc predicted from the octanol–water partition coefficients (K ₒw). The total PBDE concentrations from mono- to deca-BDEs ranged from 3.7 to 133,000 ng/L, and showed a trend toward higher concentrations in the more populous and industrialized Asian countries. The congener profiles in the leachates basically reflected the composition of PBDE technical mixtures. The occurrence of congeners not contained, or in trace concentrations, in technical products (e.g., BDEs 208, 207, 206, 202, 188, 179, 49, 17/25, 8, 1) was observed in most of the leachate samples, suggesting the debromination of technical mixtures, including BDE-209, in the MSWDS of tropical Asian countries. Moreover, the temporal trend indicated the reduction of BDE-209 over time, with a corresponding increase in and/or emergence of lower brominated PBDE congeners. The results indicated that MSWDS of tropical Asian countries are potential sources of environmental PBDEs, which may be transported to the aquatic environment via dissolution with dissolved organic matter. MSWDS could be amplifiers of PBDE toxicity in the environment, possibly through debromination.
Show more [+] Less [-]