Refine search
Results 1-3 of 3
Polycyclic aromatic hydrocarbons exposure and their joint effects with age, smoking, and TCL1A variants on mosaic loss of chromosome Y among coke-oven workers
2020
Liu, Yuhang | Bai, Yansen | Wu, Xiulong | Li, Guyanan | Wei, Wei | Fu, Wenshan | Wang, Gege | Feng, Yue | Meng, Hua | Li, Hang | Li, Mengying | Guan, Xin | Zhang, Xiaomin | He, Meian | Wu, Tangchun | Kwok, Woon
Mosaic loss of chromosome Y (mLOY) is the most common structure somatic event that related to increased risks of various diseases and mortality. Environmental pollution and genetic susceptibility were important contributors to mLOY. We aimed to explore the associations of polycyclic aromatic hydrocarbons (PAHs) exposure, as well as their joint effects with age, smoking, and genetic variants on peripheral blood mLOY. A total of 1005 male coke-oven workers were included in this study and their internal PAHs exposure levels of 10 urinary PAH metabolites and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts were measured. mLOY was defined by the median log R ratio(mLRR) of 1480 probes in male-specific region of chromosome-Y from genotyping array. We found that the PAHs exposure levels were linearly associated with mLOY. A 10-fold increase in urinary 1-hydroxynaphthalene (1-OHNa), 1-hydroxyphenanthrene (1-OHPh), 2-OHPh, 1-hydroxypyrene (1-OHP), ΣOH-PAHs, and plasma BPDE-Alb adducts could generate 0.0111, 0.0085, 0.0069, 0.0103, 0.0134, and 0.0152 decrease in mLRR-Y, respectively. Additionally, mLOY accelerated with age, smoking pack-years, and TCL1A rs1122138-C allele, and we observed the most severe mLOY among subjects carrying more than 3 of the above risk factors. Our results revealed the linear dose-effect associations between PAHs exposure and mLOY. Elder male smokers carrying rs1122138CC genotype were the most susceptible subpopulations to mLOY, who should be given protections for PAHs exposure induced chromosome-Y aberration.
Show more [+] Less [-]Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella
2020
Xu, Yi-Chuang | Xu, Yi-Huan | Zhao, Tao | Wu, Li-Xiang | Yang, Shui-Bo | Luo, Zhi
Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/β-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced β-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the β-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/β-catenin pathway; Cu regulated the β-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated β-catenin and played an essential role in nuclear accumulation of β-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/β-catenin pathway and β-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.
Show more [+] Less [-]Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella
2021
Xu, Yi-Huan | Hogstrand, Christer | Xu, Yi-Chuang | Zhao, Tao | Zheng, Hua | Luo, Zhi
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
Show more [+] Less [-]