Refine search
Results 1-10 of 304
Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse
2022
Zhou, Weiwei | Lv, Haofeng | Chen, Fei | Wang, Qunyan | Li, Junliang | Chen, Qing | Liang, Bin
Excessive fertilization leads to high nitrogen (N) leaching under intensive plastic-shed vegetable production systems, and thereby results in the contaminations of ground or surface water. Therefore, it is urgent to develop cost-effective strategies of nitrogen management to overcome these obstacles. A 15-year experiment in annual double-cropping systems was conducted to explore impacts of N application rate and straw amendment on mineral N leaching loss in plastic-shed greenhouse. The results showed that seasonal mineral N leaching was up to 103.4–603.4 kg N ha⁻¹, accounting for 12%–41% of total N input under conventional N fertilization management. However, optimized N application rates by 47% and straw addition obviously decreased mineral N leaching by 4%–86%, while had no negative impacts on N uptake and tomato yields. These large decreases of N leaching loss were mainly due to the reduced leachate amount and followed by N concentration in leachate, which was supported by improved soil water holding capacity after optimizing N application rates and straw addition. On average, 52% of water leachate and 55% of mineral N leaching simultaneously occurred within 40 days after planting, further indicating the dominant role of water leakage in regulating mineral N leaching loss. Moreover, decreasing mineral N leaching was beneficial for reducing leaching loss of base cations. Therefore, optimized N application rates and straw amendment effectively alleviates mineral N leaching losses mainly by controlling the water leakage without yield loss in plastic-shed greenhouse, making this strategy promising and interesting from environmental and economical viewpoints.
Show more [+] Less [-]Health impacts of artificial turf: Toxicity studies, challenges, and future directions
2022
Murphy, Maire | Warner, Genoa R.
Many communities around the country are undergoing contentious battles over the installation of artificial turf. Opponents are concerned about exposure to hazardous chemicals leaching from the crumb rubber cushioning fill made of recycled tires, the plastic carpet, and other synthetic components. Numerous studies have shown that chemicals identified in artificial turf, including polycyclic aromatic hydrocarbons (PAHs), phthalates, and per- and polyfluoroalkyl substances (PFAS), are known carcinogens, neurotoxicants, mutagens, and endocrine disruptors. However, few studies have looked directly at health outcomes of exposure to these chemicals in the context of artificial turf. Ecotoxicology studies in invertebrates exposed to crumb rubber have identified risks to organisms whose habitats have been contaminated by artificial turf. Chicken eggs injected with crumb rubber leachate also showed impaired development and endocrine disruption. The only human epidemiology studies conducted related to artificial turf have been highly limited in design, focusing on cancer incidence. In addition, government agencies have begun their own risk assessment studies to aid community decisions. Additional studies in in vitro and in vivo translational models, ecotoxicological systems, and human epidemiology are strongly needed to consider exposure from both field use and runoff, components other than crumb rubber, sensitive windows of development, and additional physiological endpoints. Identification of potential health effects from exposures due to spending time at artificial turf fields and adjacent environments that may be contaminated by runoff will aid in risk assessment and community decision making on the use of artificial turf.
Show more [+] Less [-]Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites
2022
The landfills store a lot of waste plastics, thus it has been confirmed a main source for the occurrence of plastics/microplastic. Although there are some reports that microplastics (MPs) can generate in leachate and refuse samples from the landfill, it exist many blanks for the evolution of physical and chemical characteristics of waste plastics and microplastics with different landfill age. To explore the process that large pieces of plastic are fractured into microplastics, the waste plastics with landfill age from 7 to 30 years are surveyed from a typical landfill in Shanghai. The results show that PE and PP are the most common types of landfilling plastics, and their chemical composition also have changed due to the creation of CO and –OH. Moreover, the crystallinity is affected by plastic type and landfill age. The crystallinity of PP increased from 24.9% to 56.8%, but for PE, the crystallinity decreased from 55.6% to 20.8%. The mechanical properties of waste plastics were reduced significantly, which may be caused by changes in carbon-chain molecules. Al, Ti, Co, and other metal elements were detected on the plastic surface. The hydrophobic behavior of waste plastic is constantly decreasing (102.2°–80.1°) under long-term landfilling. By investigating the changes in the physical and chemical characteristics of waste plastics with different landfill age can shed light upon the process of environmental weathering of waste plastics. This provide theoretical guidance for reducing the transport of microplastics to the environment.
Show more [+] Less [-]Relative importance of aqueous leachate versus particle ingestion as uptake routes for microplastic additives (hexabromocyclododecane) to mussels
2021
Jang, Mi | Shim, Won Joon | Han, Gi Myung | Cho, Youna | Moon, Yelim | Hong, Sang Hee
Microplastic pollution is emerging as a global environmental issue, and its potential for transferring hazardous chemicals to aquatic organisms is gaining attention. Studies have investigated the transfer of chemicals, mainly sorbed chemicals, through ingestion of microplastics by organisms, but limited information is available regarding chemical additives and uptake via the aqueous route through plastic leaching. In this study, we compared two bioaccumulation pathways of the additive hexabromocyclododecane (HBCD) by exposing mussels (Mytilus galloprovincialis) to two different sizes of expanded polystyrene (EPS): inedible size (4.2–5.5 mm) for leachate uptake and edible size (20–770 μm) for particle ingestion and leachate uptake. Over 10 days, the HBCD concentration increased significantly in mussels in the EPS exposure groups, indicating that EPS microplastic acts as a source of HBCD to mussels. The concentration and isomeric profiles of HBCD in mussels show that uptake through the aqueous phase is a more significant pathway for bioaccumulation of HBCD from EPS to mussels than particle ingestion. HBCD levels measured in EPS, leachate and exposed mussels from this study are environmentally relevant concentration. The fate and effects of chemical additives leached from plastic debris in ecosystem requires further investigation, as it may affect numerous environments and organisms through the aqueous phase.
Show more [+] Less [-]Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity
2021
Franklin, Hannah M. | Doederer, Katrin | Neale, Peta A. | Hayton, Joshua B. | Fisher, Paul | Maxwell, Paul | Carroll, Anthony R. | Burford, Michele A. | Leusch, Frederic D.L.
Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment. This study investigated the DBPs formed during chlorination of DOM leached from leaf litter and assessed the potential toxicity of DBPs generated. We compared the leachate of two native Australian riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis, and a reservoir water source from a catchment dominated by Eucalyptus species. Leachates were diluted to dissolved organic carbon concentrations equivalent to the reservoir (~9 mg L⁻¹). E. tereticornis leachates produced more trihalomethanes (THMs), haloacetic acids (HAAs), and haloketones after chlorination, while C. cunninghamiana produced more chloral hydrate and haloacetonitriles. Leachate from both species produced less THMs and more HAAs per mole of carbon than reservoir water. This may be because reservoir water had more aromatic, humic characteristics while leaf leachates had relatively more protein-like components. Using in vitro bioassays to test the mixture effects of all chemicals, chlorinated E. tereticornis leachate induced oxidative stress in HepG2 liver cells and bacterial toxicity more frequently and at lower concentrations than C. cunninghamiana and reservoir water. Overall, this study has shown that the DOM leached from litter of these species has the potential to generate DBPs and each species has a unique DBP profile with differing bioassay responses. E. tereticornis may pose a relatively greater risk to drinking water than C. cunninghamiana as it showed greater toxicity in bioassays. This implies tree species should be considered when planning riparian zones to ensure the benefits of vegetation to waterways are not offset by unintended increased DBP production and associated toxicity following chlorination at downstream drinking water intakes.
Show more [+] Less [-]Sustainable utilization of biowaste compost for renewable energy and soil amendments
2020
Chia, Wen Yi | Chew, Kit Wayne | Le, Cheng Foh | Lam, Su Shiung | Chee, Chelsea Siew Chyi | Ooi, Mae See Luan | Show, Pau Loke
Acceleration of urbanization and industrialization has resulted in the drastic rise of waste generation with majority of them being biowaste. This constitutes a global challenge since conventional waste management methods (i.e., landfills) present environmental issues including greenhouse gases emissions, leachate formation and toxins release. A sustainable and effective approach to treat biowaste is through composting. Various aspects of composting such as compost quality, composting systems and compost pelletization are summarized in this paper. Common application of compost as fertilizer or soil amendment is presented with focus on the low adoption level of organic waste compost in reality. Rarely known, compost which is easily combustible can be utilized to generate electricity. With the analysis on critical approaches, this review aims to provide a comprehensive study on energy content of compost pellets, which has never been reviewed before. Environmental impacts and future prospects are also highlighted to provide further insights on application of this technology to close the loop of circular bioeconomy.
Show more [+] Less [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain)
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
Show more [+] Less [-]Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics
2020
Luo, Hongwei | Li, Yu | Zhao, Yaoyao | Xiang, Yahui | He, Dongqin | Pan, Xiangliang
It is of environmental significance to study the leaching performance of additives from microplastics (MPs) and further evaluate the toxicity of leachate to microalgae. Here, we investigated the effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented MPs. Results show that aging of MPs caused surface cracks and fragmentation, increased their surface area and carbonyl contents, and promoted the release of lead chromate pigment. Chromium (Cr) and lead (Pb) tend to leach under acidic condition, rather than neutral and alkali environment. Aging treatment facilitates the leaching performance and a high concentration of NaCl solution also favors the leaching process. Toxicology experiments demonstrate that only high concentration of leachate (>10 μg L⁻¹) exerted significant inhibitory influence (p < 0.005) on cell photosynthesis of Microcystis aeruginosa. The growth inhibition of algal cells remarkably increased with increasing leachate concentrations. We observed more inhibiting effects on cell growth and photosynthesis using the leachates of aged MPs. Longer aging time leads to more release of Cr and Pb, rendering higher toxicity to microalgae. These novel findings will benefit us from assessing the leaching behavior of additives in MPs and their toxicological risks to aquatic organisms.
Show more [+] Less [-]Leaching behaviors and speciation of cadmium from river sediment dewatered using contrasting conditioning
2020
Li, Tian | Shi, Yafei | Li, Xiaoran | Zhang, Huiqin | Pi, Kewu | Gerson, Andrea R. | Liu, Defu
Chemical conditioning is an effective strategy for improved river sediment dewatering affecting both the dewatering efficiency and subsequent resource utilization of the dewatered cake. Two types of conditioning agents, polyaluminium chloride (PAC)/cationic polyacrylamide (PAM) (coagulation precipitation conditioning agent, referred to as P–P conditioning) and ferrous activated sodium persulfate (advanced oxidation conditioning agent, referred to as F–S conditioning) were examined. With increasing leach liquid to solid (L/S) ratio the concentration of Cd for the real time leachates from the dewatered cakes decreased, but the leaching ratio of Cd in both P–P and F–S dewatered cakes increased. With the same L/S, the leaching ratio was reduced for both types of conditioning, as compared to no conditioning, with the leaching ratio being least with F–S conditioning. The leaching ratio of Cd in the dewatered cake with L/S of 100 L kg⁻¹ was reduced from 21.3% of the total Cd present for the un-conditioned sediment to 12.5% upon P–P conditioning and 11.6% upon F–S conditioning. Furthermore, the different conditioning methods affected the Cd speciation in the dewatered cakes reducing the easy-to-leach speciation of exchangeable and carbonate-bound Cd species and increasing the potential-to-leach speciation of iron-manganese oxide and organically bound Cd species and also the difficult-to-leach species. Risk assessment indicates that the risk due to Cd leaching from the dewatered cakes at L/S of 100 L kg⁻¹ was reduced from high risk to medium risk after P–P and F–S conditioning with reduced bioavailability.
Show more [+] Less [-]Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China
2019
Sun, Tao | Ma, Ming | Wang, Xun | Wang, Yongmin | Du, Hongxia | Xiang, Yuping | Xu, Qinqin | Xie, Qing | Wang, Dingyong
Forest ecosystem has long been suggested as a vital component in the global mercury (Hg) biogeochemical cycling. However, there remains large uncertainties in understanding total Hg (THg) and methylmercury (MeHg) variations and their controlling factors during the whole hydrological processes in forest ecosystems. Here, we quantified Hg mass flow along hydrological processes of wet deposition, throughfall, stemflow, litter leachate, soil leachate, surface runoff, and stream, and litterfall Hg deposition, and air-forest floor elemental Hg (Hg⁰) exchange flux to set up a Hg mass balance in a subtropical forest of China. Results showed that THg concentration in stream was lower than that in wet deposition, while an opposite characteristic for MeHg concentration, and both THg and MeHg fluxes of stream were lower than those of wet deposition. Variations of THg and MeHg in throughfall and litter leachate had strong direct and indirect effects on controlling variations of THg and MeHg in surface runoff, soil leachate and stream, respectively. Especially, the net Hg methylation was suggested in the forest canopy and forest floor layers, and significant particulate bound Hg (PBM) filtration was observed in soil layers. The Hg mass balance showed that the litterfall Hg deposition was the main Hg input for forest floor Hg, and the elemental Hg vapor (Hg⁰) re-emission from forest floor was the dominant Hg output. Overall, we estimated the net THg input flux of 13.8 μg m⁻² yr⁻¹ and net MeHg input flux of 0.6 μg m⁻² yr⁻¹ within the forest ecosystem. Our results highlighted the important roles of forest canopy and forest floor to shape Hg in output flow, and the forest floor is a distinct sink of MeHg.
Show more [+] Less [-]