Refine search
Results 1-10 of 108
Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp Full text
2018
Bartlett, Adrienne J. | Hedges, Amanda M. | Intini, Kyna D. | Brown, Lisa R. | Maisonneuve, France J. | Robinson, Stacey A. | Gillis, Patricia L. | de Solla, Shane R.
Neonicotinoid insecticides are environmentally persistent and highly water-soluble, and thus are prone to leaching into surface waters where they may negatively affect non-target aquatic insects. Most of the research to date has focused on imidacloprid, and few data are available regarding the effects of other neonicotinoids or their proposed replacements (butenolide insecticides). The objective of this study was to assess the toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to Hexagenia spp. (mayfly larvae). Acute (96-h), water-only tests were conducted, and survival and behaviour (number of surviving mayflies inhabiting artificial burrows) were assessed. Acute sublethal tests were also conducted with imidacloprid, acetamiprid, and thiacloprid, and in addition to survival and behaviour, mobility (ability to burrow into sediment) and recovery (survival and growth following 21 d in clean sediment) were measured. Sublethal effects occurred at much lower concentrations than survival: 96-h LC50s ranged from 780 μg/L (acetamiprid) to >10,000 μg/L (dinotefuran), whereas 96-h EC50s ranged from 4.0 μg/L (acetamiprid) to 630 μg/L (thiamethoxam). Flupyradifurone was intermediate in toxicity, with a 96-h LC50 of 2000 μg/L and a 96-h EC50 of 81 μg/L. Behaviour and mobility were impaired significantly and to a similar degree in sublethal exposures to 10 μg/L imidacloprid, acetamiprid, and thiacloprid, and survival and growth following the recovery period were significantly lower in mayflies exposed to 10 μg/L acetamiprid and thiacloprid, respectively. A suite of effects on mayfly swimming behaviour/ability and respiration were also observed, but not quantified, following exposures to imidacloprid, acetamiprid, and thiacloprid at 1 μg/L and higher. Imidacloprid concentrations measured in North American surface waters have been found to meet or exceed those causing toxicity to Hexagenia, indicating that environmental concentrations may adversely affect Hexagenia and similarly sensitive non-target aquatic species.
Show more [+] Less [-]Evaluation of the leaching of florfenicol from coated medicated fish feed into water Full text
2018
Barreto, Fabíola M. | da Silva, Mariana R. | Braga, Patrícia A.C. | Bragotto, Adriana P.A. | Hisano, Hamilton | Reyes, Felix G.R.
Florfenicol is one of the most-used antimicrobial agents in global fish farming. Nevertheless, in most countries, its use is not conducted in accordance with good practices. The aim of this work was to evaluate the leaching of florfenicol from coated fish feed into the water. Analytical methods were developed and validated for the quantitation of florfenicol in medicated feed and water by UHPLC-MS/MS. Florfenicol residues in the water were quantified after 5- and 15-min exposures of the medicated feed in the water at 22 and 28 °C and at pH 4.5 and 8.0. The influence of pellet size and three coating agents (vegetable oil, carboxymethylcellulose, and low-methoxylated pectin) on the leaching of the drug was also assessed. Pellet size, coating agent, water temperature, and time of exposure significantly (p < 0.05) affected florfenicol leaching, while water pH did not interfere with the leaching. Coating with vegetable oil was the most efficient method to reduce florfenicol leaching, while coating with carboxymethylcellulose presented the highest leaching (approximately 60% after 15 min at 28 °C). Thus, the coating agent has a significant effect on the florfenicol leaching rate and, consequently, on the necessary dose of the drug to be administered. Moreover, it is worth mentioning that higher florfenicol leaching will pose a greater risk to environmental health, specifically in terms of the development of bacteria resistant to florfenicol. Additional studies are needed with other polymers and veterinary drugs used in medicated feed for fish farming.
Show more [+] Less [-]Analysis of glyphosate degradation in a soil microcosm Full text
2018
la Cecilia, Daniele | Maggi, Federico
Glyphosate (GLP) herbicide leaching into soil can undergo abiotic degradation and two enzymatic oxidative or hydrolytic reactions in both aerobic and anaerobic conditions; biotic oxidation produces aminomethylphosphonic acid (AMPA). Both GLP and AMPA are phytotoxic. A comprehensive GLP degradation reaction network was developed from the literature to account for the above pathways, and fifteen experimental data sets were used to determine the corresponding Michaelis-Menten-Monod (MMM) kinetic parameters. Various sensitivity analyses were designed to assess GLP and AMPA degradation potential against O2 (aq) and carbon (C) availability, pH, and birnessite mineral content, and showed that bacteria oxidized or hydrolyzed up to 98% of GLP and only 9% of AMPA. Lack of a C source limited the GLP cometabolic hydrolytic pathways, which produces non-toxic byproducts and promotes AMPA biodegradation. Low bacterial activity in O2 (aq)-limited conditions or non-neutral pH resulted in GLP accumulation. Birnessite mineral catalyzed fast GLP and AMPA chemodegradation reaching alone efficiencies of 79% and 88%, respectively, regardless of the other variables and produced non-toxic byproducts. Overall, O2 (aq) and birnessite availability played the major roles in determining the partitioning of GLP and its byproducts mass fluxes across the reaction network, while birnessite, C availability, and pH affected GLP and AMPA biodegradation effectiveness.
Show more [+] Less [-]Environmental and anthropogenic influences on ambient background concentrations of fluoride in soil Full text
2018
Excess exposure to fluoride causes substantive health burden in humans and livestock globally. However, few studies have assessed the distribution and controls of variability of ambient background concentrations of fluoride in soil. Ambient background concentrations of fluoride in soil were collated for Greater Melbourne, Greater Geelong, Ballarat and Mitchell in Victoria, Australia (n = 1005). Correlation analysis and machine learning techniques were used to identify environmental and anthropogenic influences of fluoride variability in soil. Sub-soils (>0.3 m deep), in some areas overlying siltstone and sandstone, and to a lesser extent, overlying basalt, were naturally enriched with fluoride at concentrations above ecological thresholds for grazing animals. Soil fluoride enrichment was predominantly influenced by parent material (mineralogy), precipitation (illuviation), leaching during palaeoclimates and marine inputs. Industrial air pollution did not significantly influence ambient background concentrations of fluoride at a regional scale. However, agricultural practices (potentially the use of phosphate fertilisers) were indicated to have resulted in added fluoride to surface soils overlying sediments. Geospatial variables alone were not sufficient to accurately model ambient background soil fluoride concentrations. A multiple regression model based on soil chemistry and parent material was shown to accurately predict ambient background fluoride concentrations in soils and support assessment of fluoride enrichment in the environment.
Show more [+] Less [-]Concentration of uranium in the soils of the west of Spain Full text
2018
Santos-Francés, Fernando | Gil Pacheco, Elena | Martínez-Graña, Antonio | Alonso Rojo, Pilar | Ávila Zarza, Carmelo | García Sánchez, Antonio
While determining the uranium concentration in the rock (background level) and soils on the Iberian Massif of western Spain, several geochemical anomalies were observed. The uranium concentration was much higher than the geochemical levels at these locations, and several uranium minerals were detected. The proposed uranium background levels for natural soils in the west of Salamanca Province (Spain) are 29.8 mg kg−1 in granitic rock and 71.2 mg kg−1 in slate. However, the soil near the tailings of abandoned mines exhibited much higher concentrations, between 207.2 and 542.4 mg kg−1.The calculation of different pollution indexes (Pollution Factor and Geo-accumulation Index), which reveal the conditions in the superficial horizons of the natural soils, indicated that a good percentage of the studied samples (16.7–56.5%) are moderately contaminated. The spatial distribution of the uranium content in natural soils was analysed by applying the inverse distance weighted method.The distribution of uranium through the horizons of the soils shows a tendency to accumulate in the horizons with the highest clay content. The leaching of uranium from the upper horizons and accumulation in the lower horizons of the soil could be considered a process for natural attenuation of the surface impacts of this radiogenic element in the environment. Environmental restoration is proposed in the areas close to the abandoned mining facilities of this region, given the high concentration of uranium. First, all the tailings and other mining waste would be covered with a layer of impermeable material to prevent leaching by runoff. Then, a layer of topsoil with organic amendments would be added, followed by revegetation with herbaceous plants to prevent surface erosion.
Show more [+] Less [-]Radiological comparison of a FDNPP waste storage site during and after construction Full text
2018
Connor, D.T. | Martin, P.G. | Pullin, H. | Hallam, K.R. | Payton, O.D. | Yamashiki, Y. | Smith, N.T. | Scott, T.B.
The clean-up effort that is occurring across the region affected by the 2011 Fukushima Daiichi Nuclear Power Plant accident is unprecedented in its magnitude as well as the financial cost that will eventually result. A major component of this remediation is the stripping of large volumes of material from the land surface, depositing this into large waste storage bags before placing these 1 cubic meter bags into specially constructed stores across Fukushima Prefecture.In this work, using an unmanned aerial vehicle to perform radiological surveys of a site, the time-resolved distribution of contamination during the construction of one of these waste storage sites was assessed. The results indicated that radioactive material was progressively leaching from the store into the surrounding environment. A subsequent survey of the site conducted eight months later revealed that in response to this survey and remedial actions, the contamination issue once existing on this site had been successfully resolved. Such results highlight the potential of low-altitude unmanned aerial systems to easily and rapidly assess site-wide changes over time – providing highly-visual results; therefore, permitting for prompt remedial actions to be undertaken as required.Use of UAV radiation mapping and airborne photogrammetry to produce a time-resolved assessment of remediation efforts within a Fukushima temporary storage facility.
Show more [+] Less [-]An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest Full text
2018
Shi, Leilei | Zhang, Hongzhi | Liu, Tao | Mao, Peng | Zhang, Weixin | Shao, Yuanhu | Fu, Shenglei
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure.
Show more [+] Less [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water Full text
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Show more [+] Less [-]Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events Full text
2018
Lee, Mi-Hee | Ok, Yong Sik | Hur, Jin
Biochar-leached dissolved organic matter may have a substantial impact on the water quality of receiving water surrounded by biochar-amended fields. In this study, we tracked variations in the spectroscopic characteristics and the disinfection by-products formation potentials of dissolved organic matter (DOM) leached during sequential extraction for three different biochars (BCs), which simulates DOM from BC-amended fields during intermittent rain events. The optical properties of DOM were more dependent on the BC types with different origins (sludge, corn, and rice) rather than on the extraction time. A large amount of DOM was released during the initial period of the extraction (1 day), which was equivalent to 52–60% of the total cumulative organic carbon during 17 days of extraction. The relative contribution of the initial extraction to the total cumulative amounts was greater for the formation potential of trihalomethanes (THMs) per BC (71–82%) compared to those of haloacetic acids (HAAs) or dissolved organic carbon (DOC), suggesting that the leaching behaviors of disinfection byproducts (DBP) precursors from BCs may be different from those of DOC (i.e., bulk DOM). Among the three BCs, corn BC-derived DOM exhibited the highest formation potentials of THMs and HAAs per BC for both the initial and the total cumulative extraction. The specific (or DOC-normalized) THMs formation potential was positively correlated with the ratios of terrestrial humic-like to fulvic-like components, implying condensed aromatic structures could operate as a surrogate for THMs formation of BC-derived DOM. This study provided insight into dynamic leaching behaviors of DOM from BCs and the formation potentials for THMs and HAAs in BC-amended fields under intermittent rainfall.
Show more [+] Less [-]Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation Full text
2018
Scifo, Lorette | Chaurand, Perrine | Bossa, Nathan | Avellan, Astrid | Auffan, Mélanie | Masion, Armand | Angeletti, Bernard | Kieffer, Isabelle | Labille, Jérôme | Bottero, Jean-Yves | Rose, Jerome
Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation Full text
2018
Scifo, Lorette | Chaurand, Perrine | Bossa, Nathan | Avellan, Astrid | Auffan, Mélanie | Masion, Armand | Angeletti, Bernard | Kieffer, Isabelle | Labille, Jérôme | Bottero, Jean-Yves | Rose, Jerome
The release of CeO2-bearing residues during the weathering of an acrylic stain enriched with CeO2 nanomaterial designed for wood protection (Nanobyk brand additive) was studied under two different scenarios: (i) a standard 12-weeks weathering protocol in climate chamber, that combined condensation, water spraying and UV–visible irradiation and (ii) an alternative accelerated 2-weeks leaching batch assay relying on the same weathering factors (water and UV), but with a higher intensity of radiation and immersion phases. Similar Ce released amounts were evidenced for both scenarios following two phases: one related to the removal of loosely bound material with a relatively limited release, and the other resulting from the degradation of the stain, where major release occurred. A non-linear evolution of the release with the UV dose was evidenced for the second phase. No stabilization of Ce emissions was reached at the end of the experiments. The two weathering tests led to different estimates of long-term Ce releases, and different degradations of the stain. Finally, the photo-degradations of the nanocomposite, the pure acrylic stains and the Nanobyk additive were compared. The incorporation of Nanobyk into the acrylic matrix significantly modified the response of the acrylic stain to weathering.
Show more [+] Less [-]Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation Full text
2018
Scifo, Lorette | Chaurand, Perrine | Bossa, Nathan | Avellan, Astrid | Auffan, Melanie | Masion, Armand | Angeletti, Bernard | Kieffer, Isabelle | Labille, Jérôme | Bottero, Jean-Yves | Rose, Jérôme | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | European Synchrotron Radiation Facility [Grenoble] (ESRF) | TECNALIA Foundation; "Excellence Initiative" of Aix-Marseille University A*MIDEX, a French "Investissements d'Avenir" program, through its associated Labex SERENADE [ANR-11-LABX-0064] | ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011) | European Project: 604305,EC:FP7:NMP,FP7-NMP-2013-LARGE-7,SUN(2013)
International audience | The release of CeO2-bearing residues during the weathering of an acrylic stain enriched with CeO2 nanomaterial designed for wood protection (Nanobyk brand additive) was studied under two different scenarios: (i) a standard 12-weeks weathering protocol in climate chamber, that combined condensation, water spraying and UV–visible irradiation and (ii) an alternative accelerated 2-weeks leaching batch assay relying on the same weathering factors (water and UV), but with a higher intensity of radiation and immersion phases. Similar Ce released amounts were evidenced for both scenarios following two phases: one related to the removal of loosely bound material with a relatively limited release, and the other resulting from the degradation of the stain, where major release occurred. A non-linear evolution of the release with the UV dose was evidenced for the second phase. No stabilization of Ce emissions was reached at the end of the experiments. The two weathering tests led to different estimates of long-term Ce releases, and different degradations of the stain. Finally, the photo-degradations of the nanocomposite, the pure acrylic stains and the Nanobyk additive were compared. The incorporation of Nanobyk into the acrylic matrix significantly modified the response of the acrylic stain to weathering.
Show more [+] Less [-]