Refine search
Results 41-50 of 1,487
Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities Full text
2020
Zhang, Xuyi | Lyu, Junyao | Han, Yujie | Sun, Ningxiao | Sun, Wen | Li, Jinman | Liu, Chunjiang | Yin, Shan
Plants can intercept airborne particulate matter through deposition. Different types of plants exhibit different functional leaf traits, which can affect the dry deposition velocity (Vd). However, the most crucial leaf traits of coniferous and broadleaved trees remain unidentified. In this study, we selected 18 typical plants from the subtropical monsoon regions, where PM₂.₅ (fine particulate matter with a diameter of ≤2.5 μm) concentrations are relatively high, and classified them into coniferous and broadleaved categories. Subsequently, we analyzed the relationships between Vd and leaf surface free energy (SFE), single leaf area (LAₛ), surface roughness (SR), specific leaf area (SLA), epicuticular wax content (EWC), and width-to-length ratio (W/L). The results indicated that most coniferous trees exhibited a high Vd. The correlation analysis revealed that SFE, SR, LAₛ, and W/L were the key factors that affected the Vd of all the tested species. SFE and SLA had the strongest influence on the Vd of broadleaved trees, whereas LAₛ and SLA had the strongest effect on that of coniferous trees. Most coniferous trees had a high SLA, which can reduce water loss and hinder particle deposition. However, the stiff leaves of coniferous trees fluttered less, resulting in a larger leaf area that enhanced the capture efficiency. The leaf structure of broadleaved trees is more flexible, resulting in erratic flutter, which may impede deposition and lead to high resuspension. Coniferous and broadleaved trees may have different dominant leaf traits that affect particle deposition.
Show more [+] Less [-]Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus Full text
2019
Pidlisnyuk, Valentina | Erickson, Larry | Stefanovska, Tatyana | Popelka, Jan | Hettiarachchi, Ganga | Davis, Lawrence | Trögl, Josef
This study aims to summarize results on potential phytomanagement of two metal(loid)-polluted military soils using Miscanthus x giganteus. Such an option was tested during 2-year pot experiments with soils taken from former military sites in Sliač, Slovakia and Kamenetz-Podilsky, Ukraine. The following elements were considered: As, Cu, Fe, Mn, Pb, Sr, Ti, Zn and Zr. M. x giganteus showed good growth at both military soils with slightly higher maximum shoot lengths in the second year of vegetation. Based on Principal Component Analysis similarities of metal(loid) uptake by roots, stems and leaves were summarized. Major part of the elements remained in M. x giganteus roots and rather limited amounts moved to the aerial parts. Levels taken up decreased in the second vegetation year. Dynamics of foliar metal(loid) concentrations divided the elements in two groups: essential elements required for metabolism (Fe, Mn, Cu, and Zn) and non-essential elements without any known metabolic need (As, Sr, Ti, and Zr). Fe, Mn, Ti and Sr showed similar S-shaped uptake curve in terms of foliar concentrations (likely due to dilution in growing biomass), while Cu exhibited a clear peak mid-season. Behavior of Zn was in between. Foliar Zr and As concentrations were below detection limit. The results illustrated a good potential of M. x giganteus for safely growing on metal-polluted soils taken from both military localities.
Show more [+] Less [-]Recent findings of halogenated flame retardants (HFR) in the German and Polar environment Full text
2019
Dreyer, Annekatrin | Neugebauer, Frank | Lohmann, Nina | Rüdel, Heinz | Teubner, Diana | Grotti, Marco | Rauert, Caren | Koschorreck, Jan
To get an overview about distribution, levels and temporal trends of polybrominated diphenyl ethers (PBDE) and halogenated flame retardants (HFR) of emerging concern, different types of environmental samples archived in the German Environment Specimen Bank as well as fish filet samples from the Arctic (n = 13) and Antarctica (n = 5) were analysed for 43 substances (24 PBDE, 19 HFR) using a multi-column clean-up and GC-API-MS/MS or GC-MS. Sample types were herring gull egg (n = 3), blue mussel (n = 3) and eelpout filet (n = 3) from the German North- and Baltic Sea, bream filet (n = 7), zebra mussel (n = 6) and suspended particulate matter (SPM, n = 7) from German freshwater ecosystems as well as tree leaves (n = 9)/shoots (n = 10), soil (n = 4), earthworm (n = 4) and deer liver (n = 7) as representatives of German terrestrial ecosystems. PBDE and emerging HFR were present in each investigated matrices from Germany and Polar regions showing their widespread distribution. The presence in Arctic and Antarctic fish samples confirms their long-range transport potential. Average concentrations of total emerging HFR were highest in SPM (26 ng g⁻¹ dry weight (dw)), zebra mussel (10 ng g⁻¹ dw) and herring gull egg (2.6 ng g⁻¹ dw). Lowest levels were measured in fish filet samples from Antarctica (0.02 ng g⁻¹ dw). Average total PBDE concentrations were highest in bream filet (154 ng g⁻¹), herring gull egg (61 ng g⁻¹ dw), SPM (21 ng g⁻¹ dw), and zebra mussel 18 (ng g⁻¹) and lowest in deer liver (0.04 ng g⁻¹ dw). The patterns of non-fauna terrestrial samples (leaves, shoots, soil) as well as SPM were dominated by DBDPE and BDE209. Elevated proportions of DPTE and in most cases the absence of DBDPE characterized all fauna samples with the exception of Polar samples. Overall, emerging HFR appeared to be less bioaccumulative than PBDE. Temporal trends were generally decreasing with few exceptions such as DBDPE.
Show more [+] Less [-]Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar Full text
2019
Dai, Lulu | Feng, Zhaozhong | Pan, Xiaodong | Xu, Yansen | Li, Pin | Lefohn, Allen S. | Harmens, Harry | Kobayashi, Kazuhiko
Apoplastic ascorbate (ASCapo) is an important contributor to the detoxification of ozone (O3). The objective of the study is to explore whether ASCapo is stimulated by elevated O3 concentrations. The detoxification of O3 by ASCapo was quantified in tobacco (Nicotiana L), soybean (Glycine max (L.) Merr.) and poplar (Populus L), which were exposed to charcoal-filtered air (CF) and elevated O3 treatments (E-O3). ASCapo in the three species were significantly increased by E-O3 compared with the values in the filtered treatment. For all three species, E-O3 significantly increased the malondialdehyde (MDA) content and decreased light-saturated rate of photosynthesis (Asat), suggesting that high O3 has induced injury/damage to plants. E-O3 significantly increased redox state in the apoplast (redox stateapo) for all species, whereas no effect on the apoplastic dehydroascorbate (DHAapo) was observed. In leaf tissues, E-O3 significantly enhanced reduced-ascorbate (ASC) and total ascorbate (ASC+DHA) in soybean and poplar, but significantly reduced these in tobacco, indicating different antioxidative capacity to the high O3 levels among the three species. Total antioxidant capacity in the apoplast (TACapo) was significantly increased by E-O3 in tobacco and poplar, but leaf tissue TAC was significantly enhanced only in tobacco. Leaf tissue superoxide anion (O2•-) in poplar and hydrogen peroxide (H2O2) in tobacco and soybean were significantly increased by E-O3. The diurnal variation of ASCapo, with maximum values occurring in the late morning and lower values experienced in the afternoon, appeared to play an important role in the harmful effects of O3 on tobacco, soybean and poplar.
Show more [+] Less [-]Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study Full text
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Show more [+] Less [-]Responses of leaf-associated biofilms on the submerged macrophyte Vallisneria natans during harmful algal blooms Full text
2019
Jiang, Mengqi | Zhou, Yanping | Ji, Xiyan | Li, Huimin | Zheng, Zheng | Zhang, Jibiao
The present study investigated the physiological responses, photosynthetic activity, and microbial community structure of leaf-associated biofilms on the microphyte Vallisneria natans during a harmful algal bloom. Results of the physiological and photosynthetic indices (Fᵥ/Fₘ ratios [maximum quantum yield of photosystem II (PSII)]; malondialdehyde content; total chlorophyll; and activities of superoxide dismutase, catalase and peroxidase) indicated that algal blooms could cause inhibition of photosynthesis, oxidative stress and an antioxidant system stress response in Vallisneria natans leaf-associated biofilms. Multifractal analysis suggested that allelochemicals or algal organic matter released by cyanobacteria could reduce the surface roughness of the leaf. Microbial diversity analysis of the biofilms showed that algal blooms slightly altered the microbial community structure while the richness and evenness of the microbial composition remained stable. This study provided useful information to better understand the adverse effects of algal blooms on submerged macrophytes.
Show more [+] Less [-]Dechlorane plus in greenhouse and conventional vegetables: Uptake, translocation, dissipation and human dietary exposure Full text
2019
Sun, Jianqiang | Wu, Yihua | Tao, Ninger | Lv, Li | Yu, Xiaoyan | Zhang, Anping | Qi, Hong
In an attempt to evaluate the behavior of Dechlorane plus (DP) in soil-vegetable systems, this work investigated the uptake and translocation of DP by vegetables and the dissipation of DP in soil under greenhouse and conventional conditions. To address human dietary exposure to DP, estimated dietary intake via vegetable consumption was calculated. The uptake potential indexes of DP from soil into root for tomato and cucumber cultivated under different conditions ranged from 0.089 to 0.71. The ranges of uptake potential indexes of DP from resuspended soil particles into stem, leaf and fruit were 0.68–0.78, 0.27–0.42 and 0.39–0.75, respectively. The uptake potential indexes in greenhouse vegetables were generally higher than those in conventional vegetables when the vegetables had been planted in contaminated soil, indicating that greenhouse enhanced the uptake of DP with a high soil concentration by vegetables. The translocation factor (TF) values of DP in vegetables were in the range of 0.022–0.17, indicating that DP can be transported from root to fruit even though it has a high octanol water partition coefficient (KOW). The half-lives of DP dissipation in soil ranged from 70 to 102 days. The dissipation of DP in greenhouse soil was slightly slower than that in conventional soil. Higher estimated dietary intake (EDI) values of DP via greenhouse vegetables were observed due to the higher concentration of DP in greenhouse vegetables than conventional vegetables. These results suggested that greenhouses should not be adopted for vegetable production in contaminated regions.
Show more [+] Less [-]Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes Full text
2019
Xu, Xiaowu | Yu, Xinxiao | Bao, Le | Desai, Ankur R.
The presence of plant leaves has been shown to lower the risks of health problems by reducing atmospheric particulate matter (PM). Leaf PM accumulation capacity will saturate in the absence of runoff. Rainfall is an effective way for PM to “wash off” into the soil and renew leaf PM accumulation. However, little is known about how PM wash-off varies with PM size and health problems caused by particulate pollution vary with PM size. This study thus used artificial rainfall with six plant species to find out how size-fractioned PM are washed off during rain processes. Total wash-off masses in fine, coarse and large fractions were 0.6–10.3 μg/cm2, 1.0–18.8 μg/cm2 and 4.5–60.1 μg/cm2 respectively. P. orientalis (cypress) and E. japonicus (evergreen broadleaved shrub) had the largest wash-off masses in each fraction during rainfall. P. cerasifera (deciduous broadleaved shrub) had the largest cumulative wash-off rates in each fraction. Rainfall intensity had more influence on wash-off masses and rates of large particles for six species and for small particles in evergreen species, but limited effect on wash-off proportions. Wash-off proportions decreased in large particles and increased in small particles along with rainfall. The results provide information for PM accumulation renewal of plants used for urban greening.
Show more [+] Less [-]The responding and ecological contribution of biofilm-leaves of submerged macrophytes on phenanthrene dissipation in sediments Full text
2019
Zhao, Zhenhua | Qin, Zhirui | Xia, Liling | Zhang, Dan | Mela, Sara Margaret | Li, Yong
The bacterial communities and ecological contribution of biofilm-leaves of the Vallisneria natans (VN), Hydrilla verticillata (HV) and artificial plant (AP) settled in sediments with different polluted levels of phenanthrene were investigated by high-throughput sequencing in different growth periods. There was no significant difference among the detected Alpha diversity indices based on three classification, attached surface, spiking concentration and incubation time. While Beta diversity analysis assessed by PCoA on operational taxonomic units (OTU) indicated that bacterial community structures were significantly influenced in order of attached surface > incubation time > spiking concentration of phenanthrene in sediment. Moreover, the results of hierarchical dendrograms and heat maps at genus level were consistent with PCoA analysis. We speculated that the weak influence of phenanthrene spiking concentration in sediment might be related to lower concentration and smaller concentration gradient of phenanthrene in leaves. Meanwhile, difference analysis suggested that attached surface was inclined to influence the rare genera up to significant level than incubation time. In general, the results proved that phenanthrene concentrations, submerged macrophytes categories and incubation time did influence the bacterial community of biofilm-leaves. In turn, results also showed a non-negligible ecological contribution of biofilm-leaves in dissipating the phenanthrene in sediments (>13.2%–17.1%) in contrast with rhizosphere remediation (2.5%–3.2% for HV and 9.9%–10.6% for VN).
Show more [+] Less [-]Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety Full text
2019
Käffer, Márcia I. | Domingos, Marisa | Lieske, Isadora | Vargas, Vera M.F.
Air pollution has been identified as a major cause of environmental and human health damage. O₃ is an oxidative pollutant that causes leaf symptoms in sensitive plants. This study aims to adjust a multilinear model for the monitoring of O₃ in subtropical climatic conditions by associating O₃ concentrations with measurements of morphological leaf traits in tobacco plants and different environmental variables. The plants were distributed into five areas (residential, urban or industrial) in the southern region of Brazil and exposed during 14 periods, of 14 days each, during the years of 2014 and 2015. The environmental variables and leaf traits during the exposure periods were described by mean, median, standard deviation and minimum and maximum values. Spearman correlation and multiple linear regression analyses were applied on data from exposure periods. Leaf injury index, leaf area, leaf dry mass, temperature, relative humidity, global solar radiation and accumulated rainfall were used in the regression analyses to select the best models for predicting O₃ concentrations. Leaf injury characteristically caused by O₃ was verified in all areas and periods of plant exposure. Higher values of leaf injury (24.5% and 27.7%) were registered in the 13th and 12th exposure periods during spring and in areas influenced by urban and industrial clutches. The VPD, temperature, global solar radiation and O₃ were correlated to leaf injury. Environmental variables [leaf area, leaf dry mass, global solar radiation and accumulated rainfall] and primarily the VPD were fundamental to improve the adjustments done in the bioindicator model (R² ≥ 0.73). Our research shows that biomonitoring employing the tobacco “Bel-W3” can be improved by measuring morphological leaf traits and meteorological parameters. Additionally, O₃ fumigation experiment should be performed with biomonitoring as conducted in this study, which are useful in understanding the role of other environmental factors.
Show more [+] Less [-]