Refine search
Results 1-10 of 150
NO2 air pollution drives species composition, but tree traits drive species diversity of urban epiphytic lichen communities
2022
Sebald, Veronica | Goss, Andrea | Ramm, Elisabeth | Gerasimova, Julia V. | Werth, Silke
Lichens serve as important bioindicators of air pollution in cities. Here, we studied the diversity of epiphytic lichens in the urban area of Munich, Bavaria, southern Germany, to determine which factors influence species composition and diversity. Lichen diversity was quantified in altogether 18 plots and within each, five deciduous trees were investigated belonging to on average three tree species (range 1–5). Of the 18 plots, two were sampled in control areas in remote areas of southern Germany. For each lichen species, frequency of occurrence was determined in 10 quadrats of 100 cm² on the tree trunk. Moreover, the cover percentage of bryophytes was determined and used as a variable to represent potential biotic competition. We related our diversity data (species richness, Shannon index, evenness, abundance) to various environmental variables including tree traits, i.e. bark pH levels and species affiliation and air pollution data, i.e. NO₂ and SO₂ concentrations measured in the study plots. The SO₂ levels measured in our study were generally very low, while NO₂ levels were rather high in some plots. We found that the species composition of the epiphytic lichen communities was driven mainly by NO₂ pollution levels and all of the most common species in our study were nitrophilous lichens. Low NO₂ but high SO₂ values were associated with high lichen evenness. Tree-level lichen diversity and abundance were mainly determined by tree traits, not air pollution. These results confirm that ongoing NO₂ air pollution within cities is a major threat to lichen diversity, with non-nitrophilous lichens likely experiencing the greatest risk of local extinctions in urban areas in the future. Our study moreover highlights the importance of large urban green spaces for species diversity. City planners need to include large green spaces when designing urban areas, both to improve biodiversity and to promote human health and wellbeing.
Show more [+] Less [-]PAHs in an urban-industrial area: The role of lichen transplants in the detection of local and study area scale patterns
2021
Lucadamo, L. | Gallo, L. | Corapi, A.
Spatial variation of the levels of polycyclic aromatic hydrocarbons (PAHs) was evaluated within an urban-industrial district where the main anthropogenic pressures are a 15 MW biomass power plant (BPP) and road traffic. The use of a high-density lichen transplant network and wind quantitative relationships made it possible to perform a hierarchical analysis of contamination. Combined uni-bi and multivariate statistical analyses of the resulting databases revealed a dual pattern. In its surroundings (local scale), the BPP affected the bioaccumulation of fluoranthene, pyrene and total PAHs, although a confounding effect of traffic (mostly petrol/gasoline engines) was evident. Spatial variation of the rate of diesel vehicles showed a significant association with that of acenaphthylene, acenaphthene, fluorene, anthracene and naphthalene. The series of high-speed wind values suggests that wind promotes diffusion rather than dispersion of the monitored PAHs. At the whole study area scale, the BPP was a source of acenaphthylene and acenaphthene, while diesel vehicles were a source of acenaphthylene. PAHs contamination strongly promotes oxidative stress (a threefold increase vs pre-exposure levels) in lichen transplants, suggesting a marked polluting effect of anthropogenic sources especially at the expense of the mycobiont. The proposed monitoring approach could improve the apportionment of the different contributions of point and linear anthropogenic sources of PAHs, mitigating the reciprocal biases affecting their spatial patterns.
Show more [+] Less [-]Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification
2021
Chaparro, Marcos A.E.
Pollution-tolerant lichens are recognized ecological indicators of air pollution in cities, which can also collect airborne anthropogenic particles in their tissues. Harmful (sub)micron-sized magnetites are a ubiquitous component of air particle pollution, adversely impacting human health. In this work, in situ magnetic susceptibility κᵢₛ of well-characterized ultrafine magnetite and lichen thalli were measured to quantify the amount of airborne magnetic particles (AMP) after calibration and to assess the lichen's decontamination over time. Up to 2850 magnetic measurements were carried out in twenty-nine transplanted lichens (collected in urban and clean areas) from winter 2020 to winter 2021. Before the transplants, their initial κᵢₛ values were 0.23–9.45 × 10⁻⁵ SI, representing AMP contents of 0.1–4.6 mg in lichen thalli. After lichens were transplanted to a shared site, the magnetic signals evidenced short-term increases and long-term decreases. After three, five and nine months, the AMP loss is more pronounced for transplanted lichens from polluted (e.g., AMP_5-months loss = 0.59 mg) than clean (= 0.08 mg) sites. Rainfall influenced the lichen's decontamination between seasons. In situ measurements and lichens offer a valued and time-saving methodology for biomonitoring harmful airborne particles simply and effectively.
Show more [+] Less [-]Lichen-based critical loads for deposition of nitrogen and sulfur in US forests
2021
Geiser, Linda H. | Root, Heather | Smith, Robert J. | Jovan, Sarah E. | St Clair, Larry | Dillman, Karen L.
Critical loads are thresholds of atmospheric deposition below which harmful ecological effects do not occur. Because lichens are sensitive to atmospheric deposition, lichen-based critical loads can foreshadow changes of other forest processes. Here, we derive critical loads of nitrogen (N) and sulfur (S) deposition for continental US and coastal Alaskan forests, based on nationally consistent lichen community surveys at 8855 sites. Across the eastern and western US ranges of 459 lichen species, each species' realized optimum was the N or S atmospheric deposition value at which it most frequently occurred. The mean of optima for all species at a site, weighted by their abundances, was defined as a community “airscore” indicative of species’ collective responses to atmospheric deposition. To determine critical loads for adverse community compositional shifts, we then modeled changes in airscores as a function of deposition, climate and forest habitat predictors in nonparametric multiplicative regression. Critical loads, indicative of initial shifts from pollution-sensitive toward pollution-tolerant species, occurred at 1.5 kg N ha⁻¹ y⁻¹ and 2.7 kg S ha⁻¹ y⁻¹. Importantly, these critical loads remain constant under any climate regime nationwide, suggesting both simplicity and nationwide applicability. Our models predict that preventing excess N deposition of just 0.2–2.0 kg ha⁻¹ y⁻¹ in the next century could offset the detrimental effects of predicted climate warming on lichen communities. Because excess deposition and climate warming both harm the most ecologically influential species, keeping conditions below critical loads would sustain both forest ecosystem functioning and climate resilience.
Show more [+] Less [-]Exploring the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe
2020
Chen, Jin | Guo, Yuqing | Li, Fansheng | Zheng, Yaxin | Xu, Daolong | Liu, Haijing | Liu, Xinyan | Wang, Xinyu | Bao, Yuying
Volcanic eruptions are important components of natural disturbances that provide a model to explore the effects of volcanic eruption disturbances on soil microorganisms. Despite widespread research, to the best of our knowledge, no studies of volcanic eruption disturbances have investigated the effects on soil microbial communities in the montane meadow steppe. To address this gap, we meticulously investigated the characteristics of the soil microbial communities from the volcano and steppe sites using Illumina MiSeq high-throughput sequencing. Hierarchical clustering analysis and principal coordinate analysis (PCoA) showed that the soil microbial communities from the volcano and steppe sites differed. The diversity and richness of the soil microbial communities from the steppe sites were significantly higher than at the volcano sites (P < 0.05), and the soil microbial communities in the steppe sites had higher stability. The effects of volcanic eruption disturbances on the bacterial community development are greater than its effects on the fungal communities. The environmental filtering of volcanic eruptions selectively retained some special microorganisms (i.e., Conexibacter, Agaricales, and Gaiellales) with strong adaptability to the environmental disturbances, enhanced metabolic activity for sodium and calcium reabsorption, and increased relative abundances of the lichenized saprotrophs. The soil microbial communities from the volcano and steppe sites cooperate to form complex networks of species interactions, which are strongly influenced by the interaction of the soil and vegetation factors. Our findings provide new information on the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe.
Show more [+] Less [-]The ecological impact of mineral exploitation in the Russian Arctic: A field-scale study of polycyclic aromatic hydrocarbons (PAHs) in permafrost-affected soils and lichens of the Yamal-Nenets autonomous region
2019
Ji, Xiaowen | Abakumov, Evgeny | Polyako, Vyacheslav | Xie, Xianchuan | Dongyang, Wei
Forty soil and lichen samples and sixteen soil horizon samples were collected in the mining and surrounding areas of the Yamal-Nenets autonomous region (Russian Arctic). The positive matrix factorization (PMF) model was used for the source identification of PAHs. The results of the source identification showed that the mining activity was the major source of PAHs in the area, and that the mining influenced the surrounding natural area. The 5+6-ring PAHs were most abundant in the mining area. The lichen/soil (L/S) results showed that 2+3-ring and 4-ring PAHs could be transported by air and accumulated more in lichens than in the soil, while 5+6-ring PAHs accumulated more in the soil. Strong relationships between the quotient of soil/lichen (QSL) and Log KOA and Log PL and between the quotient of lichen/histic horizon soil and KOW were observed. In addition, hydrogeological conditions influenced the downward transport of PAHs. Particularly surprising is the discovery of the high levels of 5 + 6 rings in the permafrost table (the bottom of the active layer). One hypothesis is given that the global climate change may lead to further depth of active layer so that PAHs may migrate to the deeper permafrost. In the impact area of mining activities, the soil inventory for 5+6-ring PAHs was estimated at 0.14 ± 0.017 tons on average.
Show more [+] Less [-]Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain)
2019
Parviainen, Annika | Casares Porcel, Manuel | Marchesi, Claudio | Garrido, Carlos J.
Huelva is a highly industrialized city in SW Spain hosting, among others, a Cu smelter, a phosphate fertilizer plant, a power plant, and oil refineries. This study aims to evaluate metal concentrations in lichens as bioindicators of atmospheric pollution in the impacted urban areas. Xanthoria parietina species from Huelva and nearby villages, as well as reference samples from remote, non-contaminated urban areas, were analyzed for trace elements (V, Cr, Mn, Co, Ni, Cu, Zn, Sr, As, Cd, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Er, Tm, Yb, Lu, Pb, Th, U) using Inductively Coupled Plasma-Mass Spectrometry; and for major elements (Ca, K, Mg, P, and S) by Inductively Coupled Plasma-Optical Emission Spectrometry after acid digestion.The metal composition of X. parietina exhibits spatial distribution patterns with extremely elevated concentrations (Co, Ni, Cu, Zn, As, Cd, Sb, Ba, Pb, U, and S) in the surroundings of the industrial estates to <1 km distance. Mean concentrations were significantly lower in the urban areas >1 km from the pollution sources. However, air pollution persists in the urban areas up to 4 km away, as the mean concentrations of Cu, Zn, As, Cd, Sb and S remained considerably elevated in comparison to the reference samples. Though rigorous source apportionment analysis was not the aim of this study, a good positive correlation of our results with metal abundances in ambient particulate matter and in pollution sources points to the Cu smelter as the main source of pollution. Hence, the severe air pollution affecting Huelva and nearby urban areas may be considered a serious health risk to local residents.
Show more [+] Less [-]Magnetic susceptibility of spider webs as a proxy of airborne metal pollution
2018
Rachwał, Marzena | Rybak, Justyna | Rogula-Kozłowska, Wioletta
The purpose of this pilot study was to test spider webs as a fast tool for magnetic biomonitoring of air pollution. The study involved the investigation of webs made by four types of spiders: Pholcus phalangioides (Pholcidae), Eratigena atrica and Agelena labirynthica (Agelenidae) and Linyphia triangularis (Linyphiidae). These webs were obtained from outdoor and indoor study sites. Compared to the clean reference webs, an increase was observed in the values of magnetic susceptibility in the webs sampled from both indoor and outdoor sites, which indicates contamination by anthropogenically produced pollution particles that contain ferrimagnetic iron minerals. This pilot study has demonstrated that spider webs are able to capture particulate matter in a manner that is equivalent to flora-based bioindicators applied to date (such as mosses, lichens, leaves). They also have additional advantages; for example, they can be generated in isolated clean habitats, and exposure can be monitored in indoor and outdoor locations, at any height and for any period of time. Moreover, webs are ubiquitous in an anthropogenic, heavily polluted environment, and they can be exposed throughout the year. As spider webs accumulate pollutants to which humans are exposed, they become a reliable source of information about the quality of the environment. Therefore, spider webs are recommended for magnetic biomonitoring of airborne pollution and for the assessment of the environment because they are non-destructive, low-cost, sensitive and efficient.
Show more [+] Less [-]Citizen science identifies the effects of nitrogen deposition, climate and tree species on epiphytic lichens across the UK
2018
Welden, N.A. | Wolseley, P.A. | Ashmore, M.R.
A national citizen survey quantified the abundance of epiphytic lichens that are known to be either sensitive or tolerant to nitrogen (N) deposition. Records were collected across the UK from over 10,000 individual trees of 22 deciduous species. Mean abundance of tolerant and sensitive lichens was related to mean N deposition rates and climatic variables at a 5 km scale, and the response of lichens was compared on the three most common trees (Quercus, Fraxinus and Acer) and by assigning all 22 tree species to three bark pH groups. The abundance of N-sensitive lichens on trunks decreased with increasing total N deposition, while that of N-tolerant lichens increased. The abundance of N-sensitive lichens on trunks was reduced close to a busy road, while the abundance of N-tolerant lichens increased. The abundance of N-tolerant lichen species on trunks was lower on Quercus and other low bark pH species, but the abundance of N-sensitive lichens was similar on different tree species. Lichen abundance relationships with total N deposition did not differ between tree species or bark pH groups. The response of N-sensitive lichens to reduced nitrogen was greater than to oxidised N, and the response of N-tolerant lichens was greater to oxidised N than to reduced N. There were differences in the response of N-sensitive and N-tolerant lichens to rainfall, humidity and temperature. Relationships with N deposition and climatic variables were similar for lichen presence on twigs as for lichen abundance on trunks, but N-sensitive lichens increased, rather than decreased, on twigs of Quercus/low bark pH species. The results demonstrate the unique power of citizen science to detect and quantify the air pollution impacts over a wide geographical range, and specifically to contribute to understanding of lichen responses to different chemical forms of N deposition, local pollution sources and bark chemistry.
Show more [+] Less [-]Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks
2017
Šillerová, Hana | Chrastný, Vladislav | Vítková, Martina | Francová, Anna | Jehlička, Jan | Gutsch, Marissa R. | Kocourková, Jana | Aspholm, Paul E. | Nilsson, Lars O. | Berglen, Tore F. | Jensen, Henning K.B. | Komárek, Michael
The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ⁶⁰Ni (−0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ⁶⁵Cu (−0.06 ± 0.06‰ to −3.94 ± 0.3‰) values which exceeds the range of δ⁶⁰Ni and δ⁶⁵Cu values determined in the smelter, i.e. in feeding material and slag (δ⁶⁰Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ⁶⁵Cu from −1.67 ± 0.04‰ to −1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ⁶⁰Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ⁶⁵Cu up to −0.06 ± 0.06‰ and −0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.
Show more [+] Less [-]