Refine search
Results 1-9 of 9
The final discharge: Quantifying contaminants in embalming process effluents discharged to sewers in ontario, Canada
2019
Kleywegt, Sonya | Payne, Mark | Raby, Melanie | Filippi, Daniel | Ng, Chi-Fai | Fletcher, Tim
The process of embalming human remains as part of the funeral home industry, entails replacing blood with embalming fluid. Typically the unused/excess fluids are disposed of directly to the sewershed or septic system. The presence of select contaminants in sewer discharges from 8 funeral homes (facilities) in York Region, Ontario during active embalming processes was studied. A wide range of contaminants including embalming fluids (formaldehyde and triclosan); metals, conventional parameters, persistent organic pollutants (polycyclic aromatic hydrocarbons, pesticides, and polychlorinated byphenyls), nonyl phenols and active pharmaceutical ingredients (APIs) were measured in the final embalming effluent and compared to regulatory sewer limits where available. Two main constituents of embalming fluids—formaldehyde and triclosan—were detected at maximum concentrations of 561,000 μg/L and 505 μg/L respectively. Other persistent organic pollutants detected in embalming effluent included banned pesticides lindane (83 ng/L) and metabolites of DDT (DDE; 2,300 ng/L). Elevated APIs found in over-the-counter drugs and products were also frequently detected at elevated concentrations (oxybenzone, hydrocortisone, lidocaine, naproxen, ibuprofen, ciprofloxacin and DEET). Most contaminants did not exceed regulatory sewer limits where available, however others including biochemical oxygen demand (cBOD5) and conventional parameters were consistently above regulatory limits. Large amounts of formaldehyde and triclosan may pose a risk to receiving sewersheds and receiving sewage treatment plants due to their antimicrobial activities.
Show more [+] Less [-]Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of riverbank filtration
2020
Kondor, Attila Csaba | Jakab, Gergely | Vancsik, Anna | Filep, Tibor | Szeberényi, József | Szabó, Lili | Maász, Gábor | Ferincz, Árpád | Dobosy, Péter | Szalai, Zoltán
Surface waters are becoming increasingly contaminated by pharmaceutically active compounds (PhACs), which is a potential risk factor for drinking water quality owing to incomplete riverbank filtration. This study examined the efficiency of riverbank filtration with regard to 111 PhACs in a highly urbanized section of the river Danube. One hundred seven samples from the Danube were compared to 90 water samples from relevant drinking water abstraction wells (DWAW) during five sampling periods. The presence of 52 PhACs was detected in the Danube, the quantification of 19 agents in this section of the river was without any precedent, and 10 PhACs were present in >80% of the samples. The most frequent PhACs showed higher concentrations in winter than in summer. In the DWAWs, 32 PhACs were quantified. For the majority of PhACs, the bank filtration efficiency was >95%, and not influenced by concentrations measured in the river. For carbamazepine lidocaine, tramadol, and lamotrigine, low (<50%) filtration efficiency was observed; however, no correlations were observed between the concentrations detected in the Danube and in the wells. These frequently occurring PhACs in surface waters have a relatively even distribution, and their sporadic appearance in wells is a function of both space and time, which may be caused by the constantly changing environment and micro-biological parameters, the dynamic operating schedule of abstraction wells, and the resulting sudden changes in flow rates. Due to the changes in the efficiency of riverbank filtration in space and time, predicting the occurrence and concentrations of these four PhACs poses a further challenge to ensuring a safe drinking water supply.
Show more [+] Less [-]Influence of Adsorption of Pharmaceuticals onto RO/NF Membranes on Their Removal from Water
2013
Dolar, Davor | Košutić, Krešimir | Ašperger, Danijela
Adsorption together with size exclusion and charge attraction/repulsion has to be taken into account when considering removal of pharmaceuticals as emerging contaminants from water by reverse osmosis and nanofiltration membranes. Glucocorticosteroids (hydrocortisone (HYDRO), dexamethasone (DEXA)), anesthetics (procaine, lidocaine) with relatively weak hydrophobicities (1 < log K O/W < 3), and membranes (XLE, LFC–1, CPA3, SWC1, NF90, and NF270) have been investigated in this study. Adsorption was studied by measuring the concentration of compounds in feed and permeate and by monitoring changes in membrane flux in the batch mode operation during 24 h. A decrease in the feed concentrations for HYDRO and DEXA (log K O/W < 2) was observed. The loss of these compounds in feed was associated with irreversible adsorption onto an NF270 and a CPA3 membrane. Therefore, when considering removal of pharmaceuticals with lower hydrophobicity, adsorption has to be particularly taken into account for membranes with bigger pores in the selective layer. Also, a high dipole moment and low water solubility affected adsorption on the membranes. For smaller and slightly more hydrophobic pharmaceuticals (log K O/W > 2), an increase in the feed concentration was obtained. Firstly, these compounds instantly adsorbed to the membrane. Secondly, the compounds diffused through the polymer matrix and desorbed to the permeate side after equilibrium had been reached.
Show more [+] Less [-]Thermal baths as sources of pharmaceutical and illicit drug contamination
2020
Jakab, Gergely | Szalai, Zoltán | Michalkó, Gábor | Ringer, Marianna | Filep, Tibor | Szabó, Lili | Maász, Gábor | Pirger, Zsolt | Ferincz, Árpád | Staszny, Ádám | Dobosy, Péter | Kondor, Attila Csaba
Despite the fact that there are tens of thousands of thermal baths in existence, knowledge about the occurrence of pharmaceutically active compounds (PhACs) in untreated thermal wastewater is very limited. Because used thermal water is typically legally discharged into surface waters without any treatment, the effluent poses environmental risks for the receiving water bodies. The aim of this study was to show the occurrence patterns and spatiotemporal characteristics of 111 PhACs in thermal wastewater. Six thermal water outflows of different thermal baths were tested in different seasons in the Budapest metropolitan region (Hungary), and diurnal analysis was performed. After solid-phase extraction, the samples were analysed and quantified by coupling supercritical fluid chromatography and mass spectrometry to perform simultaneous multi-residue drug analysis. The results confirm that water discharge pipes directly transport pharmaceuticals into surface water bodies; 34 PhACs were measured to be over the limit of quantification at least once, and 21 of them were found in more than one water sample. The local anaesthetic drug lidocaine, antiepileptic carbamazepine, analgesic derivative tramadol and illicit drug cocaine were detected in more than half of the samples. Caffeine, metoprolol and bisoprolol (cardiovascular drugs), benzoylecgonine (cocaine metabolite), diclofenac (NSAID), citalopram (antidepressant) and certain types of hormones also have a significant frequency of 30-50%. However, the occurrence and concentrations of PhACs vary according to the season and number/types of visitors. As demonstrated by the diurnal fluctuation, drug contamination of thermal waters can significantly vary, even for similar types of baths; furthermore, the quantity and types of some pollutants rapidly change in the discharged thermal wastewater.
Show more [+] Less [-]Ecotoxicological study of six drugs in Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata
2020
Lomba, Laura | Lapeña, David | Ros, Natalia | Aso, Elena | Cannavò, Mariachiara | Errazquin, Diego | Giner, Beatriz
The presence of drugs in the environment is an emerging issue in the scientific community. It has been shown that these substances are active chemicals that consequently affect aquatic organisms and, finally, humans as end users. To evaluate the toxicity of these compounds and how they affect the environment, it is important to perform systematic ecotoxicological and physicochemical studies. The best way to address this problem is to conduct studies on different aquatic trophic levels. In this work, an ecotoxicological study of six drugs (anhydrous caffeine, diphenhydramine hydrochloride, gentamicin sulphate, lidocaine hydrochloride, tobramycin sulphate and enalapril maleate) that used three aquatic biological models (Raphidocelis subcapitata, Aliivibrio fischeri and Daphnia magna) was performed. Additionally, the concentration of chlorophyll in the algae R. subcapitata was measured. Furthermore, EC50 values were analysed using the Passino and Smith classification (PSC) method, which categorized the compounds as toxic or relatively toxic. All of the studied drugs showed clear concentration-dependent toxic effects. The toxicity of the chemicals depended on the biological model studied, with Raphidocelis subcapitata being the most sensitive species and Aliivibrio fischeri being the least sensitive. The results indicate that the most toxic compound, for all the studied biological models, was diphenhydramine hydrochloride. Graphical abstract
Show more [+] Less [-]Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia
2016
Al Qarni, Hamed | Collier, Philip | O’Keeffe, Juliette | Akunna, Joseph
The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and N-acetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds.
Show more [+] Less [-]Iron-impregnated zeolite catalyst for efficient removal of micropollutants at very low concentration from Meurthe river
2018
Ayoub, Hawraa | Roques-Carmes, Thibault | Potier, Olivier | Koubaissy, Bachar | Pontvianne, Steve | Lenouvel, Audrey | Guignard, Cédric | Mousset, Emmanuel | Poirot, Hélène | Toufaily, Joumana | Hamieh, Tayssir
In this paper, for the first time, faujasite Y zeolite impregnated with iron (III) was employed as a catalyst to remove a real cocktail of micropollutants inside real water samples from the Meurthe river by the means of the heterogeneous photo-Fenton process. The catalyst was prepared by the wet impregnation method using iron (III) nitrate nonahydrate as iron precursor. First, an optimization of the process parameters was conducted using phenol as model macro-pollutant. The hydrogen peroxide concentration, the light wavelength (UV and visible) and intensity, the iron loading immobilized, as well as the pH of the solution were investigated. Complete photo-Fenton degradation of the contaminant was achieved using faujasite containing 20 wt.% of iron, under UV light, and in the presence of 0.007 mol/L of H₂O₂ at pH 5.5. In a second step, the optimized process was used with real water samples from the Meurthe river. Twenty-one micropollutants (endocrine disruptors, pharmaceuticals, personal care products, and perfluorinated compounds) including 17 pharmaceutical compounds were specifically targeted, detected, and quantified. All the initial concentrations remained in the range of nanogram per liter (0.8–88 ng/L). The majority of the micropollutants had a large affinity for the surface of the iron-impregnated faujasite. Our results emphasized the very good efficiency of the photo-Fenton process with a cocktail of a minimum of 21 micropollutants. Except for sulfamethoxazole and PFOA, the concentrations of all the other microcontaminants (bisphenol A, carbamazepine, carbamazepine-10,11-epoxide, clarithromycin, diclofenac, estrone, ibuprofen, ketoprofen, lidocaine, naproxen, PFOS, triclosan, etc.) became lower than the limit of quantification of the LC-MS/MS after 30 min or 6 h of photo-Fenton treatment depending on their initial concentrations. The photo-Fenton degradation of PFOA can be neglected. The photo-Fenton degradation of sulfamethoxazole obeys first-order kinetics in the presence of the cocktail of the other micropollutants.
Show more [+] Less [-]Pharmaceutical wastewater being composite mixture of environmental pollutants may be associated with mutagenicity and genotoxicity
2016
Sharīf, ʻAlī | Ashraf, Muhammad | Anjum, Aftab Ahmed | Javeed, Aqeel | Altaf, Imran | Akhtar, Muhammad Furqan | Abbas, Mateen | Akhtar, Bushra | Saleem, Ammara
Pharmaceutical industries are amongst the foremost contributor to industrial waste. Ecological well-being is endangered owing to its facile discharge. In the present study, heavy metals and organic contaminants in waste water were characterized using atomic absorption spectrophotometer and GC-MS, respectively. Mutagenicity and genotoxic potential of pharmaceutical waste water were investigated through bacterial reverse mutation assay and in vitro comet assay, respectively. Ames test and comet assay of first sample were carried out at concentrations of 100, 50, 25, 12.5, 6.25 % v/v effluent with distilled water. Chromium (Cr), lead (Pb), arsenic (As), and cadmium (Cd) were found in high concentrations as compared to WHO- and EPA-recommended maximum limits. Arsenic was found to be the most abundant metal and its maximum concentration was 0.8 mg.L⁻¹. GC-MS revealed the presence of lignocaine, digitoxin, trimethoprim, caffeine, and vitamin E in waste water. Dose-dependent decrease in mutagenic index was observed in both strains. Substantial increase in mutagenicity was observed for TA-100, when assay was done by incorporating an enzyme activation system, whereas a slight increase was detected for TA-102. In vitro comet assay of waste water exhibited decrease in damage index and percentage fragmentation with the increase in dilution of waste water. Tail length also decreased with an increase in the dilution factor of waste water. These findings suggest that pharmaceutical waste water being a mix of different heavy metals and organic contaminants may have a potent mutagenic and genotoxic effect on exposed living organisms.
Show more [+] Less [-]Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants
2012
Rúa-Gómez, Paola C. | Püttmann, Wilhelm
PURPOSE: Some of the pharmaceuticals that are not extensively investigated in the aquatic environment are the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), and the antidepressant venlafaxine (VEN). LDC metabolizes to 2,6-xylidine (2,6-DMA) and monoethylglycinexylidine (MEGX), TRA to O-desmethyltramadol (ODT), and VEN to O-desmethylvenlafaxine (ODV). Within this study, the distribution and behavior of these compounds in German wastewater treatment plants (WWTPs) were investigated. METHODS: Samples of influents and effluents from WWTPs in Hesse, Germany were collected between January and September 2010. Analytes were extracted from wastewater samples by solid-phase extraction and from solid samples by sonication. Extracts were measured using gas chromatography/mass spectrometry. RESULTS: LDC, TRA, VEN, ODT, and ODV were detected in all analyzed influent and effluent samples. 2,6-DMA could not be identified. MEGX was not detected. TRA and ODV were present in untreated wastewater at the highest concentrations (max, 1,129 (TRA) and 3,302 ng L−1 (ODV)), while the concentrations of LDC and VEN were all significantly lower (mean, 135 (LDC) and 116 ng L−1 (VEN)). All of the analytes were only partially removed in the WWTPs. The mean ratios between the concentrations of the metabolites and their respective parent compounds in influents were 4.7 (ODV/VEN) and 0.7 (ODT/TRA). These values remain approximately constant comparing influents and effluents. CONCLUSIONS: LDC, TRA, VEN, ODT, and ODV are only partially removed from sewage water by WWTPs and thus are continuously discharged in respective recipient rivers. A further transformation of TRA and VEN into the known metabolites during treatment in the WWTPs is not observed.
Show more [+] Less [-]