Refine search
Results 1-10 of 142
Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone.
1995
Mikkelsen T.N. | Dodell B. | Lutz C.
Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit
2019
Dusart, Nicolas | Vaultier, Marie-Noëlle | Olry, Jean-Charles | Buré, Cyril | Gérard, Joëlle | Jolivet, Yves | Le Thiec, Didier | SILVA (SILVA) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Lorraine (UL) | ANR-12-LABXARBRE-01
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
Show more [+] Less [-]Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit
2019
Dusart, Nicolas | Vaultier, Marie-Noëlle | Olry, Jean-Charles | Buré, Cyril | Gérard, Joëlle | Jolivet, Yves | Le Thiec, Didier | SILVA (SILVA) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Lorraine (UL) | ANR-12-LABXARBRE-01
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
Show more [+] Less [-]Generation of novel n-p-n (CeO2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants
2022
Rajendran, Saravanan | Hoang, Tuan K.A. | Trudeau, Michel L. | Jalil, A.A. | Naushad, Mu | Awual, Md Rabiul
Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO₂-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
Show more [+] Less [-]A new understanding of the microstructure of soot particles: The reduced graphene oxide-like skeleton and its visible-light driven formation of reactive oxygen species
2021
Zhu, Jiali | Shang, Jing | Zhu, Tong
The mechanisms of soot’s photochemistry are still unclear, especially, how the microstructure and composition of soot influence its photoactivity. In the current study, we started with the exploration of the microstructure of soot particles and gained new insights. The elemental-carbon fraction of soot (E-soot), considered the core component of soot and can reflect the intrinsic characteristics of soot, was extracted by organic solvents and characterized in terms of structure and chemical reactivity. The intrinsic structure of E-soot was found to be more analogous to reduced graphene oxide than to graphene, in terms of containing similar levels of defective sites such as oxygen-containing functional groups and environmentally persistent free radicals, as well as exhibiting similar optoelectronic performance. The generation of reactive oxygen species via an electron transfer pathway under visible light suggests that reduced graphene oxide-like E-soot can serve as a potential carbo-photocatalyst, which facilitates elucidating the mechanism of E-soot’s role during soot’s photochemical aging. Our study reveals the intrinsic structure of soot and its role in photo-triggered reactive oxygen species production, which is vital for atmospheric and health effects.
Show more [+] Less [-]Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
Show more [+] Less [-]Nickel decorated manganese oxynitride over graphene nanosheets as highly efficient visible light driven photocatalysts for acetylsalicylic acid degradation
2021
Mohan, Harshavardhan | Yoo, Suhwan | Thimmarayan, Srivalli | Oh, Hyeon Seung | Kim, Gitae | Seralathan, Kamala-Kannan | Shin, Taeho
In this work, we prepared nanocomposites of nickel-decorated manganese oxynitride on graphene nanosheets and demonstrated them as photocatalysts for degradation of acetylsalicylic acid (ASA). The catalyst exhibited a high degradation efficiency over ASA under visible light irradiation and an excellent structural stability after multiple uses. Compared to manganese oxide (MnO) and manganese oxynitride (MnON) nanoparticles, larger specific surface area and smaller band gap were observed for the nanocomposite accounting for the enhanced photocatalytic efficiency. Besides the compositional effect of the catalyst, we also examined the influence of various experimental parameters on the degradation of ASA such as initial concentration, catalyst dose, initial pH and additives. The best performance was obtained for the nanocomposite when the catalyst dose was 10 mg/mL and the initial pH 3. Detection of intermediates during photocatalysis showed that ASA undergoes hydroxylation, demethylation, aromatization, ring opening, and finally complete mineralization into CO₂ and H₂O by reactive species. For practical applications as a photocatalyst, cytotoxicity of the nanocomposite was also evaluated, which revealed its insignificant impact on the cell viability. These results suggest the nanocomposite of nickel-decorated manganese oxynitride on graphene nanosheets as a promising photocatalyst for the remediation of ASA-contaminated water.
Show more [+] Less [-]Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation
2021
Van Pham, Viet | Mai, Diem-Quynh | Bui, Dai-Phat | Van Man, Tran | Zhu, Bicheng | Zhang, Liuyang | Sangkaworn, Jariyaporn | Tantirungrotechai, Jonggol | Reutrakul, Vichai | Cao, Thi Minh
Enhancing and investigating the photocatalytic activity over composites for new models remains a challenge. Here, an emerging S-scheme photocatalyst composed of 2D/0D g-C₃N₄ nanosheets-assisted SnO₂ nanoparticles (g-C₃N₄/SnO₂) is successfully synthesized and used for degrading nitrogen oxide (NO), which causes negative impacts on the environment. A wide range of characterization techniques confirms the successful synthesis of SnO₂ nanoparticles, g-C₃N₄ nanosheets, and 2D/0D g-C₃N₄/SnO₂ S-scheme photocatalysts via hydrothermal and annealing processes. Besides, the visible-light response is confirmed by optical analysis. The S-scheme charge transfer was elucidated by Density-Functional Theory (DFT) calculation, trapping experiments, and electron spin resonance (ESR). We found that intrinsic oxygen vacancies of SnO₂ nanoparticles and S-scheme charge transfer addressed the limitation of other heterojunction types. It is notable that compared pure SnO₂ nanoparticles and g-C₃N₄, g-C₃N₄/SnO₂ offered the best photocatalytic NO degradation and photostability under visible light with the removal of more than 40% NO at 500 ppb throughout the experiment. Benefiting from the unique structural features, the new generation architectural structure of S-scheme heterojunction exhibited potential photocatalytic activity and it would simultaneously act more promising for environmental treatment in the coming years.
Show more [+] Less [-]Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles
2020
Salam, Mohamed Abdel | AbuKhadra, Mostaf R. | Mohamed, Aya S.
Pieces of glass as solid wastes were recycled in the synthesis of highly order MCM-41 that decorated by green fabricated Co₃O₄ nanoparticles using the green extract of green tea leaves forming novel green nano-composite. The synthetic Co₃O₄/MCM-41 exhibit high surface area, low bandgap energy (1.63 eV), and typical spherical morphology decorated by Co₃O₄ nanoparticles. The composite was evaluated as green photocatalyst in effective oxidation of methyl parathion pesticide in the presence of a visible light source. The degradation results revealed complete removal of 50 mg/L and 100 mg/L after 60 min and 90 min, respectively using 0.25 of the catalyst at pH 8. The detection of the TOC in the treated methyl parathion solution gives strong indications about the formation of organic intermediate compounds during the oxidation steps. The main detected intermediate compound are C₆H₅OH(NO₂), C₆H₅OH, (CH₃O)₃P(S), C₆H₄(OH)₂, C₆H₃(OH)₃, C₆H₄(NH₂)OP(O)(OCH₃)₂, (CH₃O)₂P(O)OH, (CH₂)₂C(OH)OH(CHO)OC(O), and HO₂C(CH₂)₂C(O)CHO. The detected intermediate compounds converted into SO₄²⁻, PO₄³⁻, NO₃⁻, and CO₂ under the extensive photocatalytic of them over Co₃O₄/MCM-41. The oxidizing species trapping test verified the controlling of the methyl parathion degradation pathway by the hydroxyl radicals. Finally, the composite showed significant reusability properties and applied five times in the oxidation of methyl parathion with considerable degradation percentages.
Show more [+] Less [-]Enhanced photocatalytic activity of ZnO/g-C3N4 composites by regulating stacked thickness of g-C3N4 nanosheets
2020
Gao, Xingxing | Yang, Binzheng | Yao, Wenqing | Wang, Yajun | Zong, Ruilong | Wang, Jian | Li, Xianchun | Jin, Wenjie | Tao, Dongping
A self-assembly method was adopted to synthesize loading architecture of ZnO/g-C₃N₄ heterojunction composites by hybridization of g-C₃N₄ nanosheets and ZnO nanoparticles utilizing a refluxing method at a low temperature. More importantly, we provided a novel route to regulate the π-π restacking thickness of the g-C₃N₄ nanosheets among ZnO/g-C₃N₄ composites by the controlling the refluxing time in the ethanol solution, which can optimize the surface hybrid structure, optical response and photocatalytic activity. Among all of samples, ZnO/g-C₃N₄ composites with a refluxing 12 h showed the enhancement of photocatalytic activity. The enhanced visible light photocatalytic activity of ZCN-12 composites can be ascribed to the synergistic effects of the construction of hybrid structures, reduction of structural defects of g-C₃N₄ nanosheets and suitable π-π restacking g-C₃N₄ nanosheets loading thickness.
Show more [+] Less [-]