Refine search
Results 1-10 of 126
A songbird can detect the eyes of conspecifics under daylight and artificial nighttime lighting Full text
2022
Yorzinski, Jessica L. | Troscianko, Jolyon | Briolat, Emmanuelle | Schapiro, Steven Jay | Whitham, Will
Eyes convey important information about the external and internal worlds of animals. Individuals can follow the gaze of others to learn about the location of salient objects as well as assess eye qualities to evaluate the health, age or other internal states of conspecifics. Because of the increasing prevalence of artificial lighting at night (ALAN), urbanized individuals can potentially garner information from conspecific eyes under both daylight and ALAN. We tested this possibility using a visual modeling approach in which we estimated the maximum distance at which individuals could detect conspecific eyes under daylight and high levels of ALAN. We also estimated the minimum light level at which individuals could detect conspecific eyes. Great-tailed grackles (Quiscalus mexicanus) were used as our study species because they are highly social and are unusual among birds in that they regularly gather at nocturnal roosts in areas with high levels of ALAN. This visual modelling approach revealed that grackles can detect conspecific eyes under both daylight and ALAN, regardless of iris coloration. The grackles could detect conspecific eyes at farther distances in daylight compared to ALAN. Our results highlight the potential importance of lighting conditions in shaping social interactions.
Show more [+] Less [-]A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity Full text
2021
Bavani, Thirugnanam | Madhavan, Jagannathan | Prasad, Saradh | AlSalhi, Mohamad S. | AlJaafreh, Mamduh J.
Herein, an efficient visible-light-driven BiFeO₃/AgVO₃ nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO₃/AgVO₃ nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO₃/AgVO₃ nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO₃/AgVO₃ nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO₃. The lower PL intensity of 3%-BiFeO₃/AgVO₃ nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO₃/AgVO₃ nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O₂– radicals in the degradation over BiFeO₃/AgVO₃ nanocomposite.
Show more [+] Less [-]Ag NPs decorated C–TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction Full text
2021
Wang, Yuhan | Kang, Chunli | Li, Xinyang | Hu, Qing | Wang, Chao
In this study, heterojunction photocatalysts, XAg@C-TCZ, based on MOF-derived C–TiO₂ and Cd₀.₅Zn₀.₅S decorated with Ag nanoparticles (Ag NPs) were successfully synthesized through hydrothermal and calcination methods. The catalytic effectiveness of XAg@C-TCZ was evaluated by simultaneous photocatalytic degradation of rhodamine B (RhB) and reduction of Cr(VI) under simulated sunlight irradiation. The presence of the Z-scheme heterojunction was demonstrated through trapping experiments, X-ray photoelectron spectroscopy (XPS), time-resolved photoluminescence (PL) investigations, and electron spin resonance (ESR) spectroscopy. With an initial RhB and Cr(VI) concentration of 7 mg L⁻¹ and 5 mg L⁻¹, the catalyst 10Ag@C-TCZ achieved a simultaneous removal of 95.2% and 95.5% within 120 min, respectively. With the same catalyst, the degradation rate of RhB was 2.75 times higher and the reduction rate of Cr(VI) was 9.3 times higher compared to pure Cd₀.₅Zn₀.₅S. Total organic carbon (TOC) analysis confirmed the extent of mineralization of RhB, while the reduction of Cr(VI) was corroborated by XPS. Compared to pure RhB and Cr(VI) solutions, the reaction rates are smaller in the solution containing both contaminants, which is attributed to the competition for ·O₂⁻. 10Ag@C-TCZ also exhibited a stable catalytic performance in tap water and lake water. This work provides a new perspective on the construction of heterojunctions with doped MOF derivatives for the purification of complex pollutant systems.
Show more [+] Less [-]Artificial light reduces foraging opportunities in wild least horseshoe bats Full text
2021
Luo, Bo | Xu, Rong | Li, Yunchun | Zhou, Wenyu | Wang, Weiwei | Gao, Huimin | Wang, Zhen | Deng, Yingchun | Liu, Ying | Feng, Jiang
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0–15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
Show more [+] Less [-]Constant light exposure causes oocyte meiotic defects and quality deterioration in mice Full text
2020
Zhang, Huiting | Yan, Ke | Sui, Lumin | Nie, Junyu | Cui, Kexin | Liu, Jiahao | Zhang, Hengye | Yang, Xiaogan | Lu, Kehuan | Liang, Xingwei
Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m⁶A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.
Show more [+] Less [-]Extensive solar light harvesting by integrating UPCL C-dots with Sn2Ta2O7/SnO2: Highly efficient photocatalytic degradation toward amoxicillin Full text
2020
Le, Shukun | Yang, Weishan | Chen, Gonglai | Yan, Aoyu | Wang, Xiaojing
The carbon dots (C-dots) mediated Sn₂Ta₂O₇/SnO₂ heterostructures with spongy structure were successfully assembled by simple hydrothermal route. The photocatalytic removal efficiency of amoxicillin (AMX, 20 mg L⁻¹) over C-dots/Sn₂Ta₂O₇/SnO₂ was estimated to reach up 88.3% within 120 min simulated solar light irradiating. Meanwhile, the HPLC-MS/MS analysis and density functional theory (DFT) computation were examined to clarify the photo-degradation pathway of AMX. The mechanism investigation proposed that with the modification of C-dots, the photocatalysts improves the utilization of solar energy by harvesting the long wavelength solar light due to their unique up-converted photoluminescence (UCPL). In addition, the porous spongy structure and plenty of tiny C-dots promote the ability of adsorption by enlarged specific surface area. Furthermore, the C-dots mediated Z-type heterojunction of Sn₂Ta₂O₇/SnO₂ facilitates the efficient separation and transfer of photo-induced carriers. Our work affords a promising approach for the design of the high-efficient photocatalysts to remedy poisonous antibiotics in aqueous environment.
Show more [+] Less [-]A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Full text
2018
Grubisic, Maja | van Grunsven, Roy H.A. | Manfrin, Alessandro | Monaghan, Michael T. | Hölker, Franz
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.
Show more [+] Less [-]Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions Full text
2018
Huang, Jing | Huang, Guohe | An, Chunjiang | He, Yuan | Yao, Yao | Zhang, Peng | Shen, Jian
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions.
Show more [+] Less [-]A case study to optimise and validate the brine shrimp Artemia franciscana immobilisation assay with silver nanoparticles: The role of harmonisation Full text
2016
Kos, Monika | Kahru, Anne | Drobne, Damjana | Singh, Shashi | Kalčíková, Gabriela | Kühnel, Dana | Rohit, Rekulapelly | Gotvajn, Andreja Žgajnar | Jemec, Anita
Brine shrimp Artemia sp. has been recognised as an important ecotoxicity and nanotoxicity test model organism for salt-rich aquatic environments, but currently there is still no harmonised testing protocol which would ensure the comparable results for hazard identification. In this paper we aimed to design the harmonised protocol for nanomaterial toxicity testing using Artemia franciscana and present a case study to validate the protocol with silver nanoparticles (AgNPs). We (i) revised the existing nanotoxicity test protocols with Artemia sp. (ii) optimised certain methodological steps based on the experiments with AgNPs and potassium dichromate (K2Cr2O7) as a soluble reference chemical and (iii) tested the optimised protocol in an international inter-laboratory exercise conducted within the EU FP7 NanoValid project. The intra- and inter-laboratory reproducibility of the proposed protocol with a soluble reference chemical K2Cr2O7 was good, which confirms the suitability of this assay for conventional chemicals. However, the variability of AgNPs toxicity results was very high showing again that nanomaterials are inherently challenging for toxicity studies, especially those which toxic effect is linked to shed metal ions. Among the identified sources for this variability were: the hatching conditions, the type of test plate incubation and the illumination regime. The latter induced variations assumingly due to the changes in bioavailable silver species concentrations. Up to our knowledge this is the first inter-laboratory comparison of the Artemia sp. toxicity study involving nanomaterials. Although the inter-laboratory exercise revealed poor repeatability of AgNPs toxicity results, this study provides valuable information regarding the importance of harmonisation of all steps in the test procedure. Also, the presented AgNPs toxicity case study may serve as a platform for further validation steps with other types of NMs.
Show more [+] Less [-]Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size Full text
2011
Ma, H. | Kabengi, N.J. | Bertsch, P.M. | Unrine, J.M. | Glenn, T.C. | Williams, P.L.
The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity.
Show more [+] Less [-]