Refine search
Results 1-10 of 77
The influence of pH, soil type and time on adsorbtion and uptake by plants of Cd added to the soil.
1989
Eriksson J.E.
Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains
2021
Ke-tan, | Guo, Guangyu | Liu, Junrong | Zhang, Chao | Tao, Yue | Wang, Panpan | Xu, Yanhong | Chen, Lanzhou
To explore a novel strategy for the remediation of soils polluted with Cu and Cd, three strains of plant-growth-promoting rhizobacteria (PGPRs) isolated from contaminated mines and two grass species (perennial ryegrass and tall fescue) were selected in this study. The performance of PGPR strains in metal adsorption, maintaining promotion traits under stress, and ameliorating phytostabilization potential was evaluated. Cd²⁺ exerted a stronger deleterious effect on microbial growth than Cu²⁺, but the opposite occurred for grass seedlings. Adsorption experiment showed that the growing PGPR strains were able to immobilize maximum 79.49% Cu and 81.35% Cd owing to biosorption or bioaccumulation. The strains exhibited the ability to secrete indole-3-acetic acid (IAA) and dissolve phosphorus in the absence and presence of metals, and IAA production was even enhanced in the presence of low Cu²⁺ (5 mg L⁻¹). However, the siderophore-producing ability of the isolates was strongly suppressed under Cu and Cd exposure. Ryegrass was further selected for pot experiments owing to its higher germination rate and tolerance under Cu and Cd stress than fescue. Pot-experiment results revealed that PGPR addition significantly increased the shoot and root biomasses of ryegrass by 11.49%–44.50% and 43.53%–90.29% in soil co-contaminated with 800 mg Cu kg⁻¹ and 30 mg Cd kg⁻¹, respectively. Metal uptake and translocation in inoculated ryegrass significantly decreased owing to the reduced diethylenetriamine pentaacetic acid-extractable metal content and increased residual metal-fraction percentage mediated by PGPR. Interestingly, stress mitigation was observed in these inoculated plants; in particular, their malondialdehyde content and superoxide dismutase activity were even significantly lower than those of ryegrass under normal conditions. Therefore, PGPR could be a promising option to enhance the phytostabilization efficiency of Cu and Cd in heavily polluted soils.
Show more [+] Less [-]The influence of salinization on seed germination and plant growth under mono and polyculture
2020
Sea level rise induced-salinization is lowering coastal soils productivity. In order to assess the effects that increased salinity may provoke in terrestrial plants, using as model species: Trifolium pratense, Lolium perenne, Festuca arundinacea and Vicia sativa, two specific objectives were targeted: i) to determine the sensitivity of the selected plant species to increased salinity (induced by seawater-SW or by NaCl, proposed as a surrogate of SW) and, ii) to assess the influence of salinization in total biomass under different agricultural practices (mono- or polycultures).The four plant species exhibited a higher sensitivity to NaCl than to SW. Festuca arundinacea was the most tolerant species to NaCl (EC₅₀,ₛₑₑd gₑᵣₘᵢₙₐₜᵢₒₙ and EC₅₀,gᵣₒwₜₕ of 18.6 and 10.5 mScm⁻¹, respectively). The other three species presented effective conductivities in the same order of magnitude and, in general, with 95% confidence limits overlapping. Soil moistened with SW caused no significant adverse effects on seed germination and growth of L. perenne. Similar to NaCl, the other three species, in general, presented a similar sensitivity to SW exposure with EC₅₀,ₛₑₑd gₑᵣₘᵢₙₐₜᵢₒₙ and EC₅₀,gᵣₒwₜₕ within the same order of magnitude and with confidence limits overlapping.The agricultural practice (mono-vs polyculture) showed some influence on the biomass of each plant species. When considering total productivity, for aerial and root biomass, it was higher in control comparatively to salinization conditions. Under salinization stress, the practice of polyculture was associated with a higher aerial and root total biomass than monocultures (for instance with combinations with T. pratense and F. arundinacea).Results suggest that the effects of salinity stress on total productivity may be minimized under agricultural practices of polyculture. Thus, this type of cultures should be encouraged in low-lying coastal ecosystems that are predicted to suffer from salinization caused by seawater intrusions.
Show more [+] Less [-]Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.)
2020
Li, Guirong | Chen, Fukai | Jia, Shengyong | Wang, Zongshuo | Zuo, Qiting | He, Hongmou
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co−contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co−contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co−contaminated soil.
Show more [+] Less [-]Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy
2017
Ji, Ying | Sarret, Géraldine | Schulin, R. (Rainer) | Tandy, Susan
Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils.
Show more [+] Less [-]Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress
2011
Lopareva-Pohu, Alena | Verdin, Anthony | Garçon, Guillaume | Lounès-Hadj Sahraoui, Anissa | Pourrut, Bertrand | Debiane, Djouher | Waterlot, Christophe | Laruelle, Frédéric | Bidar, Géraldine | Douay, Francis | Shirali, Pirouz
Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress. Results showed that the two plant species under study were suitable to reduce the mobility and the availability of these elements. Moreover, the plant growth was better on CFA amended MTE-contaminated soils, and the plant sensitivity to MTE-induced physiological stress, as studied through photosynthetic pigment contents and oxidative damage was lower or similar. In conclusion, these results supported the usefulness of aided phytostabilisation of MTE-highly contaminated soils.
Show more [+] Less [-]Enhanced reduction of lead bioavailability in phosphate mining wasteland soil by a phosphate-solubilizing strain of Pseudomonas sp., LA, coupled with ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.)
2021
Xiao, Chunqiao | Guo, Shuyu | Wang, Qi | Chi, Ruan
Due to ecologically unsustainable mining strategies, there remain large areas of phosphate mining wasteland contaminated with accumulated lead (Pb). In this study, a Pb-resistant phosphate-solubilizing strain of Pseudomonas sp., LA, isolated from phosphate mining wasteland, was coupled with two species of native plants, ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.), for use in enhancing the reduction of bioavailable Pb in soil from a phosphate mining wasteland. The effect of PbCO₃ solubilization by Pseudomonas sp. strain LA was evaluated in solution culture. It was found that strain LA could attain the best solubilization effect on insoluble Pb when the PbCO₃ concentration was 1% (w/v). Pot experiments were carried out to investigate the potential of remediation by ryegrass and sonchus in phosphate mining wastelands with phosphate rock application and phosphate-solubilizing bacteria inoculation. Compared to the control group without strain LA inoculation, the biomass and length of ryegrass and sonchus were markedly increased, available P and Pb in roots increased by 22.2%–325% and 23.3%–368%, respectively, and available P and Pb in above-ground parts increased by 4.44%–388% and 1.67%–303%, respectively, whereas available Pb in soil decreased by 14.1%–27.3%. These results suggest that the combination of strain LA and plants is a bioremediation strategy with considerable potential and could help solve the Pb-contamination problem in phosphate mining wastelands.
Show more [+] Less [-]Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile
2017
Mondaca, Pedro | Catrin, Joanie | Verdejo, José | Sauvé, Sébastien | Neaman, Alexander
To better determine phytotoxicity thresholds for metals in the soil, studies should use actual field-contaminated soil samples rather than metal-spiked soil preparations. However, there are surprisingly few such data available for Cu phytotoxicity in field-contaminated soils. Moreover, these studies differ from each other with regards to soil characteristics and experimental setups. This study aimed at more accurately estimating Cu phytotoxicity thresholds using field-collected agricultural soils (Entisols) from areas exposed to contamination from Cu mining. For this purpose, the exposure to Cu was assessed by measuring total soil Cu, soluble Cu, free Cu2+ activity, and Cu in the plant aerial tissues. On the other hand, two bioassay durations (short-term and long-term), three plant species (Avena sativa L., Brassica rapa CrGC syn. Rbr, and Lolium perenne L.), and five biometric endpoints (shoot length and weight, root length and weight, and number of seed pods) were considered. Overall plant growth was best predicted by total Cu content of the soil. Despite some confounding factors, it was possible to determine EC10, EC25 and EC50 of total Cu in the soil. Brassica rapa was more sensitive than Avena sativa for all endpoints, while Lolium perenne was of intermediate sensitivity. For the short-term bioassay (21 days for all three species), the averaged EC10, EC25 and EC50 values of total soil Cu (in mg kg−1) were 356, 621, and 904, respectively. For the long-term bioassay (62 days for oat and 42 days for turnip), the averaged EC10, EC25 and EC50 values of total soil Cu (in mg kg−1) were 355, 513, and 688, respectively. The obtained results indicate that chronic test is a suitable method for assessing Cu phytotoxicity in field-contaminated soils.
Show more [+] Less [-]Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils
2009
Stuckey, Jason W. | Neaman, Alexander | Ravella, Ramesh | Komarneni, Sridhar | Martínez, Carmen Enid
This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg-1 and Sector 3: pH 4.2, total Cu = 112 mg Cu kg-1) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg-1 (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.
Show more [+] Less [-]Effects of ozone on inter- and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens
2009
Hayes, F. | Mills, G. | Ashmore, M.
Trifolium repens and Lolium perenne were exposed as both monocultures and two-species mixtures to an episodic rural ozone regime in large, well-watered containers within solardomes for 12 weeks. There were reductions in biomass for T. repens, but not L. perenne, and the proportion of T. repens decreased in ozone-exposed mixtures compared to the control. In addition, leaf biomass of T. repens was maintained at the expense of biomass partitioning to the stolons. The decreased growth corresponded with decreased photosynthetic capacity for T. repens, however, by the end of the exposure there was also decreased photosynthetic capacity of L. perenne, a species previously considered insensitive to ozone. The observed decreases in photosynthetic efficiency and capacity in elevated ozone indicate that the ability of such ubiquitous vegetation to act as a sink for atmospheric carbon may be reduced in future climates. Ozone causes changes in biomass partitioning, and photosynthetic efficiency and capacity that could decrease the ability of plants to act as a carbon sink.
Show more [+] Less [-]