Refine search
Results 1-2 of 2
Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec
2018
Gourdji, Shannon
In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O3) as well as nitrogen dioxide (NO2) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus ‘Nana’, Pinus mugho var. pumilio, Pinus mugho ‘Slowmound’ and Pinus pumila ‘Dwarf Blue’ are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum ‘Shaina’ and ‘Mikawa-Yatsubusa’ are options to reduce O3 levels. Magnolias are tolerant to NO2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia ‘Genie’ is a good option to remove NO2 in urban settings and to indirectly reduce O3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM10 of which 35.10 kg is PM2.5. The removal rates are 4.00 g/m2 and 1.52 g/m2 for PM10 and PM2.5, respectively. This paper provides insight to addressing air pollution through urban rooftop greening.
Show more [+] Less [-]Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China
2017
Shi, Junna | Zhang, Gang | An, Hailong | Yin, Weilun | Xia, Xinli
Particulate matter is potentially harmful to human health but green tree species act as air filters to adhere these particulates. The elemental composition, number density, and size fractions of particles on leaf surfaces of 14 urban green from Xizhimen overpass and the Olympic Forest Park in Beijing, China were examined by scanning electron microscopy and X-ray energy dispersive spectrometry. Particles that accumulated on leaves were comprised mainly of C, O, Si, Ca, Fe, and Pb. The number density of particles was 50,961.5 mm−2, and 52.9% and 25% of the particles were submicron (<1 μm) and fine (<2.5 μm), respectively. The densities and size fractions of the particles deposited on the adaxial and abaxial side of leaves were significantly different, and 24% of the particles were deposited on the abaxial side of leaves. The densities of the particles in four size fractions differed significantly among the species at the two sampling sites. Salix matsudana, Euonymus japonicus, Magnolia denudate, Sophora japonica, Amygdalus persica, and Salix babylonica efficiently captured all particle sizes on their leaf surfaces. S. matsudana, E. japonicus, M. denudate, S. japonica, Fraxinus chinensis, and Ginkgo biloba efficiently captured submicron and fine particles, which can have serious effects on human health. These differences among species provide more insight into the sink capacity of green tree species, and the efficiencies of plant species for trapping particulates can be used to guide urban tree planning and decrease air pollution.
Show more [+] Less [-]