Refine search
Results 1-2 of 2
Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops
2017
Mayerová, Markéta | Petrová, Šárka | Madaras, Mikuláš | Lipavský, Jan | Šimon, Tomáš | Vaněk, Tomáš
Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the Příbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants’ aboveground and belowground biomass and in woody plants’ leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg⁻¹ in twigs and 16.74 and 1188 mg kg⁻¹ in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg⁻¹, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.
Show more [+] Less [-]Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India)
2021
Parihar, Jagdeep Kaur | Parihar, Pardeep Kaur | Pakade, Yogesh B. | Katnoria, Jatinder Kaur
The present study was planned to explore the bioaccumulation potential of 23 plant species via bioaccumulation factor (BAf), metal accumulation index (MAI), translocation potential (Tf), and comprehensive bioconcentration index (CBCI) for seven heavy metals (cadmium, chromium, cobalt, copper, iron, manganese, and zinc). The studied plants, in the vicinity of ponds at Sahlon: site 1, Chahal Khurd: site 2, and Karnana: site 3 in Shaheed Bhagat Singh Nagar, Punjab (India), were Ageratum conyzoides (L.) L., Amaranthus spinosus L., Amaranthus viridis L., Brassica napus L., Cannabis sativa L., Dalbergia sissoo DC., Duranta repens L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Ficus infectoria Roxb., Ficus palmata Forssk., Ficus religiosa L., Ipomoea carnea Jacq., Medicago polymorpha L., Melia azedarach L., Morus indica L., Malva rotundifolia L., Panicum virgatum L., Parthenium hysterophorus L., Dolichos lablab L., Ricinus communis L., Rumex dentatus L., Senna occidentalis (L.) Link, and Solanum nigrum L. BAf and Tf values showed high inter-site deviations for studied metals. MAI values were found to be more substantial in shoots as compared with that of roots of plants. Maximum CBCI values were observed for M. azedarach (0.626), M. indica (0.572), D. sissoo (0.497), and R. communis (0.474) for site 1; F. infectoria (0.629), R. communis (0.541), D. sissoo (0.483), F. palmata (0.457), and D. repens (0.448) for site 2; D. sissoo (0.681), F. religiosa (0.447), and R. communis (0.429) for site 3. Although, high bioaccumulation of individual metals was observed in herbs like C. sativa, M. polymorpha, and Amaranthus spp., cumulatively, trees were found to be the better bioaccumulators of heavy metals.
Show more [+] Less [-]