Refine search
Results 1-10 of 57
A comparison between two polychaete species; Marphysa gravelyi and Dendronereis aestuarina in terms of heavy metal accumulation from three differently polluted mangrove ecosystems of Northern Kerala, India. Full text
2024
Jithin, Kothalil | Dinesh, Kaippilly
Three separate mangrove ecosystems in Kerala's Kannur district were examined for trace metal build-up in sediment and two polychaete species, Marphysa gravelyi and Dendronereis aestuarina. By classifying the areas according to the intensity of anthropogenic activity, metal deposition in polychaete tissue was investigated. ICP-MS was used to assess the heavy metal load and the accumulation of metals in sediment in the range of, Zn 24.37-59 mg/kg, Ni 23.67- 59.25 mg/kg, Cu 11.27- 38.6 mg/kg, Pb 4.5- 16.4 mg/kg, Cd 0.1-1.8 mg/kg, Fe 1.25- 3.67 %, and Al 0.65-2.43 %. The soil sample's Zn concentration was at its highest and heavy metals accumulated in the pattern Zn˃Ni˃Cu˃Pb˃Cd. By just switching the concentrations of Ni and Cu, polychaetes' trace metal concentrations follow the same pattern as those found in soil, however, M. gravelyi was discovered to have larger amounts of accumulation when compared to D. aestuarina, mostly for metals like Zn and Pb. Based on data compiled from all stations, the average concentration of accumulation for Zn was 62.34 mg/kg & 43.45 mg/kg, and for Pb, it was 6.59 mg/kg & 1.86 mg/kg in M. gravelyi and D. aestuarina, respectively. Most metal buildup is found in mangrove soil, which has higher levels of organic carbon and clay particles. The findings imply that D. aestuarina is an organism that is sensitive to pollution and that M. gravelyi is a species that is extremely tolerant of pollution, suggesting that the species can be used to anticipate the state of its surrounding environment.
Show more [+] Less [-]Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1 Full text
2016
Semboung Lang, Firmin | Destain, Jacqueline | Delvigne, Frank | Druart, Philippe | Ongena, Marc | Thonart, Philippe
peer reviewed | Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons.With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment.
Show more [+] Less [-]Characterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment Full text
2016
Semboung Lang, Firmin | Destain, Jacqueline | Delvigne, Frank | Druart, Philippe | Ongena, Marc | Thonart, Philippe
peer reviewed | Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation result from human activities such as oil and gas exploration and exploitation operations. Remediation of these ecosystems requires the development of adequate and effective strategies. Natural attenuation, biostimulation, and bioaugmentation are all biological soil treatment techniques that can be adapted to mangroves. Our experiments were performed on samples of fresh mangrove sediments from the Cameroon estuary and mainly from the Wouri River in Cameroon. This study aims to assess the degradation potential of a bacterial consortium isolated from mangrove sediment. The principle of our bioremediation experiments is based on a series of tests designed to evaluate the potential of an active indigenous microflora and three exogenous pure strains, to degrade diesel with/without adding nutrients. The experiments were conducted in laboratory flasks and a greenhouse in microcosms. In one case, as in the other, the endogenous microflora showed that it was able to degrade diesel. Under stress of the pollutant, the endogenous microflora fits well enough in the middle to enable metabolism of the pollutant. However, the Rhodococcus strain was more effective over time. The degradation rate was 77 and 90%in the vials containing the sterile sediments and non-sterile sediments, respectively. The results are comparable with those obtained in the microcosms in a greenhouse where only the endogenous microflora were used. The results of this study show that mangrove sediment contains an active microflora that can metabolize diesel. Indigenous and active microflora show an interesting potential for diesel degradation.
Show more [+] Less [-]Mangrove microbial diversity and the impact of trophic contamination Full text
2013
Bouchez, Agnes | Pascault, Noémie | Chardon, Cècile | Bouvy, Marc | Cecchi, Philippe | Lambs, Luc | Herteman, Melanie | Fromard, François | Got, Patrice | Leboulanger, Christophe | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Institut National de la Recherche Agronomique (INRA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Ecologie des systèmes marins côtiers (Ecosym) ; Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS) | Gestion de l'Eau, Acteurs, Usages (UMR G-EAU) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD [Occitanie]) | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | French Ministry of Ecology, Energy, Sustainable Development, and Sea (MEEDDM) [CV070000783] ; French National Center for Scientific Research (CNRS)
Mangrove microbial diversity and the impact of trophic contamination Full text
2013
Bouchez, Agnes | Pascault, Noémie | Chardon, Cècile | Bouvy, Marc | Cecchi, Philippe | Lambs, Luc | Herteman, Melanie | Fromard, François | Got, Patrice | Leboulanger, Christophe | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Institut National de la Recherche Agronomique (INRA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Ecologie des systèmes marins côtiers (Ecosym) ; Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS) | Gestion de l'Eau, Acteurs, Usages (UMR G-EAU) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD [Occitanie]) | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | French Ministry of Ecology, Energy, Sustainable Development, and Sea (MEEDDM) [CV070000783] ; French National Center for Scientific Research (CNRS)
International audience | Mangroves are threatened ecosystems that provide numerous ecosystem services, especially through their wide biodiversity, and their bioremediation capacity is a challenging question in tropical areas. In a mangrove in Mayotte, we studied the potential role of microbial biofilm communities in removing nutrient loads from pre-treated wastewater. Microbial community samples were collected from tree roots, sediments, water, and from a colonization device, and their structure and dynamics were compared in two areas: one exposed to sewage and the other not. The samples from the colonization devices accurately reflected the natural communities in terms of diversity. Communities in the zone exposed to sewage were characterized by more green algae and diatoms, higher bacteria densities, as well as different compositions. In the area exposed to sewage, the higher cell densities associated with specific diversity patterns highlighted adapted communities that may play a significant role in the fate of nutrients.
Show more [+] Less [-]Mangrove microbial diversity and the impact of trophic contamination Full text
2013
Bouchez, Agnes | Pascault, Noémie | Chardon, Cècile | Bouvy, Marc | Cecchi, Philippe | Lambs, Luc | Herteman, Mélanie | Fromard, François | Got, Patrice | Leboulanger, Christophe | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Institut National de la Recherche Agronomique (INRA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Ecologie des systèmes marins côtiers (Ecosym) ; Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS) | Gestion de l'Eau, Acteurs, Usages (UMR G-EAU) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD [France-Sud]) | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | French Ministry of Ecology, Energy, Sustainable Development, and Sea (MEEDDM) [CV070000783] ; French National Center for Scientific Research (CNRS)
International audience | Mangroves are threatened ecosystems that provide numerous ecosystem services, especially through their wide biodiversity, and their bioremediation capacity is a challenging question in tropical areas. In a mangrove in Mayotte, we studied the potential role of microbial biofilm communities in removing nutrient loads from pre-treated wastewater. Microbial community samples were collected from tree roots, sediments, water, and from a colonization device, and their structure and dynamics were compared in two areas: one exposed to sewage and the other not. The samples from the colonization devices accurately reflected the natural communities in terms of diversity. Communities in the zone exposed to sewage were characterized by more green algae and diatoms, higher bacteria densities, as well as different compositions. In the area exposed to sewage, the higher cell densities associated with specific diversity patterns highlighted adapted communities that may play a significant role in the fate of nutrients.
Show more [+] Less [-]Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf Full text
2020
Li, Ruilong | Zhang, Shuaipeng | Zhang, Linlin | Yu, Kefu | Wang, Shaopeng | Wang, Yinghui
Laboratory studies demonstrated that the mussels were good model organisms in revealing microplastics (MPs) uptake and toxicity. However, only limited field study data on the MPs in benthic marine mesoherbivores collected from mangrove forests are currently available. In this study, the MPs in the snails (Ellobium chinense) organs, rather than the shell, from a mangrove forest were dominant fraction (maximum reaching to 60%). Unexpectedly, no significant linear relationships were found between the levels of MPs in the organs of the snails and the levels in the sediment/tidal water. Further studies were done to explore the sources of the MPs in snail organs. MPs in snail organs at both the landward (interior) and seaward (exterior) zones mainly origin from the pore water. Moreover, the MPs found in the snails showed no relevance to the particulate matter (PM) collected from pore water. The findings reported here imply that both the MPs and PM in pore water affect the extent of MPs enter into the organs of benthic marine mesoherbivores collected from mangrove forest.
Show more [+] Less [-]Physiological aspects of mangrove (Laguncularia racemosa) grown in microcosms with oil-degrading bacteria and oil contaminated sediment Full text
2013
Sodré, Vanessa | Caetano, Vanessa S. | Rocha, Renata M. | Carmo, Flávia L. | Medici, Leonardo O. | Peixoto, Raquel S. | Rosado, Alexandre S. | Reinert, Fernanda
To assess the severity of oil spills on mangroves, diagnosis of the vegetation health is crucial. Some aspects of photosynthesis such as photochemical efficiency and leaf pigment composition together with the level of oxidative stress may constitute reliable indicators for vegetation health. To test this approach 14 month old Laguncularia racemosa were contaminated with 5 L m−2 of the marine fuel oil MF-380 and treated with an oil degrading bacterial consortium in microcosms. Contamination resulted in a 20% decrease in shoot dry weight after 128 days. Photochemical efficiency, pigment content, catalase and ascorbate peroxidase remained unchanged. Multivariate ordination of DGGE microbial community fingerprints revealed a pronounced separation between the oil contaminated and the non-contaminated samples. Further studies are necessary before physiological parameters can be recommended as indicators for plant's health in oil polluted mangroves.
Show more [+] Less [-]Persistent organic pollutants and trace metals in selected marine organisms from the Akanda National Park, Gabon (Central Africa) Full text
2024
Sardenne, Fany | Le Loch, Francois | Bodin, Nathalie | Mve-beh, Jean-hervé | Munaron, Jean-marie | Mbega, Jean-daniel | Nzigou, Aime Roger | Sadio, Oumar | Budzinski, Hélène | Leboulanger, Christophe
Akanda National Park (ANP) is composed of mangrove ecosystems bordering Libreville, Gabon's capital. The contamination of aquatic resources from the ANP by persistent organic pollutants (POPs) and trace metals (TMs) was never evaluated. To provide a basis for their monitoring in the ANP, five species (two fish, two mollusks, and one crustacean) were analyzed from three sampling sites in 2017. Contamination levels for POPs and TMs were below maximum acceptable limits for seafood, including Cd and Pb. No DDT was found in any sample. Inter-specific differences were more obvious than the differences among sites, although the results may be biased by an unbalanced sampling design. The oyster Crassostrea gasar was the most contaminated species, making this species a good candidate to assess environmental contamination in the area. The studied species also contained essential elements, such as Fe, Zn and Mn at interesting levels in a nutritional point of view.
Show more [+] Less [-]Core sediments and oil chemistry from contaminated mangroves in eastern Niger Delta, Ogoniland, Nigeria Full text
2021
Gundlach, Erich R. | Giadom, Ferdinand D. | Akpokodje, Enuvie G. | Bonte, Matthijs | Tse, Akah C. | Ekeocha, Nnamdi E. | Story, Keith T. | Acra, Edward J.
Thirty cores to maximum depth of 3.7 m were taken in 2018 to investigate sedimentary characteristics and hydrocarbon penetration within mangrove sediments in Bodo (southeastern Niger Delta), an area contaminated by numerous ongoing oil spills but most significantly in 2008. Sediments were dominated by organically rich (Chikoko) mud underlain by clay with sandier sediments at deeper core depths and adjacent to shorelines. Analysis of 202 samples showed high median hydrocarbon concentrations at the surface (39,000 mg/kg) and shallow subsurface (10–25 cm, 25,000 mg/kg), decreasing with depth: 430 mg/kg at 40–70 cm; 157 mg/kg at 75–120 cm, and <30 mg/kg at depths ≥150 cm. Most (85%) EPA-16 priority polycyclic aromatic hydrocarbons and all monoaromatics were below detection limit. Shallow subsurface oil penetration was aided by crab burrows and presence of mangrove remnants and was inhibited from deeper depths by groundwater at ~25 cm and increased sediment compaction.
Show more [+] Less [-]Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle Full text
2020
Verâne, Jéssica | dos Santos, Naiara C.P. | da Silva, Verônica L. | de Almeida, Marcos | de Oliveira, Olívia M.C. | Moreira, Ícaro T.A.
A phytoremediation experiment was carried out in mesocosms to investigate the performance of Rhizophora mangle in the remediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediment contaminated with crude oil. The water pH of the experiments (phytoremediation and natural attenuation) ranged from 4.9 to 8.4 at 0 and 90 days, respectively. The oxy-reduction potential (Eh) ranged from oxidising (108.0 mV, time 0) to reducing (approximately −110.0 mV, time 90) environments. Dissolved oxygen (DO) ranged from 5.7 mg L⁻¹ (time 0) to 4.5 mg L⁻¹ and 3.6 mg L⁻¹ (time 90) in phytoremediation and natural attenuation, respectively. The sediments had silty texture and an average concentration of 5% organic matter (OM). Phytoremediation (60.76%) showed better efficiency in the remediation of the 16 PAHs compared to natural attenuation (49.57%). Principal component analyses showed a correlation between the concentrations of PAHs with pH, Eh, OM and DO in both experiments.
Show more [+] Less [-]