Refine search
Results 1-10 of 334
Insights on Ecotoxicological Effects of Microplastics in Marine Ecosystems: The EPHEMARE Project
2019
Regoli, Francesco | Albentosa, Marina | Avio, Carlo Giacomo | Batel, Annika | Bebianno, Maria João | Bégout, Marie-Laure | Beiras, Ricardo | Bellas, Juan | Blust, Ronny | Bour, Agathe | Braunbeck, Thomas | Cachot, Jérôme | Carteny, Camilla Catarci | Cormier, Bettie | Cousin, Xavier | Cuesta, Alberto | Esteban, María Ángeles | Faimali, Marco | Gambardella, Chiara | Garaventa, Francesca | Gorbi, Stefania | Guilhermino, Lúcia | Hylland, Ketil | Keiter, Steffen | Kopke, Kathrin | Morin, Bénédicte | Pacheco, Alexandre | Pittura, Lucia | Town, Raewyn | Vieira, Luis
The Ephemare project was supported in the period 2015–2018 by JPI Oceans, as one of 4 sister projects in the joint action on ecological aspects of microplastics. Ephemare investigated several issues concerning the ecotoxicological effects of microplastics (MPs) in marine organisms. Ephemare included 16 European Institutions from 10 Countries and was organized into seven, highly complementary Work Packages (WPs) with the aim to elucidate adsorption and release of chemicals to/from MPs, coupled with MP ingestion rates, translocation in different tissues, trophic transfer and egestion, potential toxicological effects and mechanisms of action, as well as real distributions of MPs in marine organisms from several European areas.
Show more [+] Less [-]The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020
2022
Kanhai, La Daana K. | Asmath, Hamish | Gobin, Judith F.
Plastic pollution is one of several anthropogenic stressors putting pressure on ecosystems of the Caribbean Large Marine Ecosystem (CLME). A ‘Clean Ocean’ is one of the ambitious goals of the United Nations (UN) Decade of Ocean Science for Sustainable Development. If this is to be realized, it is imperative to build upon the work of the previous decades (1980–2020). The objectives of the present study were to assess the state of knowledge about: (i) the distribution, quantification, sources, transport and fate of marine debris/litter and microplastics in the coastal/marine environment of the CLME and, (ii) the effects of plastics on biodiversity. Snapshots, i.e., peer-reviewed studies and multi-year (1991–2020) marine debris data from International Coastal Cleanup (ICC) events, indicated that plastic debris was a persistent issue in multiple ecosystems and environmental compartments of the CLME. Collectively, a suite of approaches (debris categorization, remote sensing, particle tracking) indicated that plastic debris originated from a combination of land and marine-based sources, with the former more significant than the latter. Rivers were identified as an important means of transporting mismanaged land-based waste to the marine environment. Oceanic currents were important to the transport of plastic debris into, within and out of the region. Plastic debris posed a threat to the biodiversity of the CLME, with specific biological, physical, ecological and chemical effects being identified. Existing data can be used to inform interventions to mitigate the leakage of plastic waste to the marine environment. Given the persistent and transboundary nature of the issue, further elucidation of the problem, its causes and effects must be prioritized, while simultaneously harmonizing regional and international approaches.
Show more [+] Less [-]Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches
2021
Vinay Kumar, B.N. | Löschel, Lena A. | Imhof, Hannes K. | Löder, Martin G.J. | Laforsch, Christian
Microplastic (MP) contamination is present in the entire marine environment from the sediment to the water surface and down to the deep sea. This ubiquitous presence of MP particles opens the possibility for their ingestion by nearly all species in the marine ecosystem. Reports have shown that MP particles are present in local commercial seafood species leading to the possible human ingestion of these particles. However, due to a lack of harmonized methods to identify microplastics (MPs), results from different studies and locations can hardly be compared. Hence, this study was aimed to detect, quantify, and estimate MP contamination in commercially important mussels originating from 12 different countries distributed worldwide. All mussels were obtained from supermarkets and were intended for human consumption. Using a combinatorial approach of focal plane array (FPA)-based micro- Fourier-transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy allowed the detection and characterization of MP down to a size of 3 μm in the investigated mussels. Further, a gentle sample purification method based on enzymes has been modified in order to optimize the digestion of organic material in mussels. A random forest classification (RFC) approach, which allows a rapid discrimination between different polymer types and thus fast generation of data on MP abundance and size distributions with high accuracy, was implemented in the analytical pipeline for IR spectra. Additionally, for the first time we also applied a RFC approach for the automated characterization of Raman spectra of MPs.
Show more [+] Less [-]Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod)
2020
Yu, Juan | Tian, Ji-Yuan | Xu, Rui | Zhang, Zheng-Yu | Yang, Gui-Peng | Wang, Xue-Dan | Lai, Jing-Guang | Chen, Rong
The effects of microplastics pollution on the marine ecosystem have aroused attention. Copepod grazing stimulates dimethylsulfide (DMS) release from dimethylsulfoniopropionate (DMSP) in phytoplankton, but the effect of microplastics exposure on DMS and DMSP production during copepod feeding has not yet been revealed. Here, we investigated the effects of polyethylene (PE) and polyamide-nylon 6 (PA 6) microplastics on ecotoxicity and DMS/DMSP production in the copepod Tigriopus japonicus. The microplastics had detrimental effects on feeding, egestion, reproduction, survival, and DMS and DMSP production in T. japonicus and presented significant dose-response relationships. The 24 h-EC50 for ingestion rates (IRs) of female T. japonicus exposed to PE and PA 6 were 57.6 and 58.9 mg L⁻¹, respectively. In comparison, the body size of the copepods was not significantly affected by the microplastics during one generation of culture. Ingesting fluorescently labeled microplastics confirmed that microplastics were ingested by T. japonicus and adhered to the organs of the body surface. T. japonicus grazing promoted DMS release originating from degradation of DMSP in algal cells. Grazing-activated DMS production decreased because of reduced IR in the presence of microplastics. These results provide new insight into the biogeochemical cycle of sulfur during feeding in copepods exposed to microplastics.
Show more [+] Less [-]Risks of floating microplastic in the global ocean
2020
Everaert, G. | De Rijcke, M. | Lonneville, B. | Janssen, C.R. | Backhaus, T. | Mees, J. | van Sebille, E. | Koelmans, A.A. | Catarino, A.I. | Vandegehuchte, M.
Despite the ubiquitous and persistent presence of microplastic (MP) in marine ecosystems, knowledge of its potential harmful ecological effects is low. In this work, we assessed the risk of floating MP (1 μm – 5 mm) to marine ecosystems by comparing ambient concentrations in the global ocean with available ecotoxicity data. The integration of twenty-three species-specific effect threshold concentration data in a species sensitivity distribution yielded a median unacceptable level of 1.21 * 105 MP m-³ (95% CI: 7.99 * 103 – 1.49 * 106 MP m-³). We found that in 2010 for 0.17% of the surface layer (0 – 5 m) of the global ocean a threatening risk would occur. By 2050 and 2100, this fraction increases to 0.52% and 1.62%, respectively, according to the worst-case predicted future plastic discharge into the ocean. Our results reveal a spatial and multidecadal variability of MP-related risk at the global ocean surface. For example, we have identified the Mediterranean Sea and the Yellow Sea as hotspots of marine microplastic risks already now and even more pronounced in future decades.
Show more [+] Less [-]Risks of floating microplastic in the global ocean
2020
Despite the ubiquitous and persistent presence of microplastic (MP) in marine ecosystems, knowledge of its potential harmful ecological effects is low. In this work, we assessed the risk of floating MP (1 μm–5 mm) to marine ecosystems by comparing ambient concentrations in the global ocean with available ecotoxicity data. The integration of twenty-three species-specific effect threshold concentration data in a species sensitivity distribution yielded a median unacceptable level of 1.21 ∗ 10⁵ MP m⁻³ (95% CI: 7.99 ∗ 10³–1.49 ∗ 10⁶ MP m⁻³). We found that in 2010 for 0.17% of the surface layer (0–5 m) of the global ocean a threatening risk would occur. By 2050 and 2100, this fraction increases to 0.52% and 1.62%, respectively, according to the worst-case predicted future plastic discharge into the ocean. Our results reveal a spatial and multidecadal variability of MP-related risk at the global ocean surface. For example, we have identified the Mediterranean Sea and the Yellow Sea as hotspots of marine microplastic risks already now and even more pronounced in future decades.
Show more [+] Less [-]Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China
2020
Peng, Quancai | Song, Jinming | Li, Xuegang | Yuan, Huamao | Liu, Mengtan | Duan, Liqin | Zuo, Jiulong
Pharmaceutically active compounds (PhACs) have attracted increasing attention due to their large consumption volumes, high bioactivity and potential ecotoxicity. In this study, a total of 150 commonly used drugs were investigated in sediments of Jiaozhou Bay (JZB). Twenty-five target compounds were detected, of which ten were discovered for the first time in marine sediments. The range of total PhAC content was 3.62–21.4 ng/g dry weight. Ketoprofen (2.49 ng/g), oxytetracycline (1.00 ng/g) and roxithromycin (0.97 ng/g) were the preponderant PhACs. PhACs gradually decreased from east to west, and the distribution of PhACs in the sediment was controlled by the source channel, seawater dynamic process and sediment composition. The diatom, organic matter, and clay proportions in the sediments and the nutrients in the overlying water were the most important environmental factors affecting the distribution of PhACs. PhAC pollution in the sediments of the JZB exhibited an increasing trend. Coprostanol could be used as a chemical indicator of the PhAC concentration in JZB sediments. PhACs were mainly derived from direct pollution due to human fecal excretion in the eastern region. Ofloxacin, tetracycline and oxytetracycline were found to pose high or medium risks to aquatic organisms. It is necessary and urgent to improve the treatment technology of drug residues in sewage treatment plants to decrease the pollution of PhAC residues. With the continuous aging of the global population, the use of PhACs will increase rapidly, which may cause more unpredictable threats to the marine ecosystem. Therefore, the monitoring of PhACs in the marine environment needs to be strengthened, and studies on PhAC occurrence and effects must be considered a priority in global environmental research.
Show more [+] Less [-]Risks of floating microplastic in the global ocean
2020
Everaert, G. | De Rijcke, M. | Lonneville, B. | Janssen, C.R. | Backhaus, T. | Mees, J. | van Sebille, E. | Koelmans, A.A. | Catarino, A.I. | Vandegehuchte, M.
Despite the ubiquitous and persistent presence of microplastic (MP) in marine ecosystems, knowledge of its potential harmful ecological effects is low. In this work, we assessed the risk of floating MP (1 μm – 5 mm) to marine ecosystems by comparing ambient concentrations in the global ocean with available ecotoxicity data. The integration of twenty-three species-specific effect threshold concentration data in a species sensitivity distribution yielded a median unacceptable level of 1.21 * 105 MP m-³ (95% CI: 7.99 * 103 – 1.49 * 106 MP m-³). We found that in 2010 for 0.17% of the surface layer (0 – 5 m) of the global ocean a threatening risk would occur. By 2050 and 2100, this fraction increases to 0.52% and 1.62%, respectively, according to the worst-case predicted future plastic discharge into the ocean. Our results reveal a spatial and multidecadal variability of MP-related risk at the global ocean surface. For example, we have identified the Mediterranean Sea and the Yellow Sea as hotspots of marine microplastic risks already now and even more pronounced in future decades.
Show more [+] Less [-]Bioaccumulation and ecotoxicological responses of juvenile white seabream (Diplodus sargus) exposed to triclosan, warming and acidification
2019
Maulvault, Ana Luísa | Camacho, Carolina | Barbosa, Vera | Alves, Ricardo | Anacleto, Patrícia | Cunha, Sara C. | Fernandes, José O. | Pousão-Ferreira, Pedro | Paula, José Ricardo | Rosa, Rui | Diniz, Mario | Marques, António
Triclosan (TCS) is a synthetic microbial compound widely used in the formulation of various personal care products. Its frequent detection in marine ecosystems, along with its physical and chemical properties, suggest that TCS can be highly persistent, being easily bioaccumulated by biota and, therefore, eliciting various toxicological responses. Yet, TCS's mechanisms of bioaccumulation and toxicity still deserve further research, particularly focusing on the interactive effects with climate change-related stressors (e.g. warming and acidification), as both TCS chemical behaviour and marine species metabolism/physiology can be strongly influenced by the surrounding abiotic conditions. Hence, the aim of this study was to assess TCS bioaccumulation and ecotoxicological effects (i.e. animal fitness indexes, antioxidant activity, protein chaperoning and degradation, neurotoxicity and endocrine disruption) in three tissues (i.e. brain, liver and muscle) of juvenile Diplodus sargus exposed to the interactive effects of TCS dietary exposure (15.9 μg kg−1 dw), seawater warming (ΔTºC = +5 °C) and acidification (ΔpCO2 ∼ +1000 μatm, equivalent to ΔpH = −0.4 units). Muscle was the primary organ of TCS bioaccumulation, and climate change stressors, particularly warming, significantly reduced TCS bioaccumulation in all fish tissues. Furthermore, the negative ecotoxicological responses elicited by TCS were significantly altered by the co-exposure to acidification and/or warming, through either the enhancement (e.g. vitellogenin content) or counteraction/inhibition (e.g. heat shock proteins HSP70/HSC70 content) of molecular biomarker responses, with the combination of TCS plus acidification resulting in more severe alterations. Thus, the distinct patterns of TCS tissue bioaccumulation and ecotoxicological responses induced by the different scenarios emphasized the need to further understand the interactive effects between pollutants and abiotic conditions, as such knowledge enables a better estimation and mitigation of the toxicological impacts of climate change in marine ecosystems.
Show more [+] Less [-]Scavenging as a pathway for plastic ingestion by marine animals
2019
Andrades, Ryan | dos Santos, Roberta Aguiar | Martins, Agnaldo Silva | Teles, Davi | Santos, Robson Guimarães
Plastic pollution is prevalent worldwide and affects marine wildlife from urbanized beaches to pristine oceanic islands. However, the ecological basis and mechanisms that result in marine animal ingestion of plastic debris are still relatively unknown, despite recent advances. We investigated the relationship between scavenging behavior and plastic ingestion using green turtles, Chelonia mydas, as a model. Diet analysis of C. mydas showed that sea turtles engaging in scavenging behavior ingested significantly more plastic debris than individuals that did not engage in this foraging strategy. We argue that opportunistic scavenging behavior, an adaptive behavior in most marine ecosystems, may now pose a threat to a variety of marine animals due to the current widespread plastic pollution found in oceans.
Show more [+] Less [-]