Refine search
Results 1-10 of 99
Modelling local nanobiomaterial release and concentration hotspots in the environment
2021
Hauser, Marina | Nowack, Bernd
Nanobiomaterials (NBMs) are a special category of nanomaterials used in medicine. As applications of NBMs are very similar to pharmaceuticals, their environmental release patterns are likely similar as well. Different pharmaceuticals were detected in surface waters all over the world. Consequently, there exists a need to identify possible NBM exposure routes into the environment. As the application of many NBMs is only carried out at specific locations (hospitals), average predicted environmental concentrations (PECs) may not accurately represent their release to the environment. We estimated the local release of poly(lactic-co-glycolic acid) (PLGA), which is investigated for their use in drug delivery, to Swiss surface waters by using population data as well as type, size and location of hospitals as proxies. The total mean consumption of PGLA in Switzerland using an explorative full-market penetration scenario was calculated to be 770 kg/year. 105 hospitals were considered, which were connected to wastewater treatment plants and the receiving water body using graphic information system (GIS) modelling. The water body dataset contained 20,167 river segments and 210 lake polygons. Using the discharge of the river, we were able to calculate the PECs in different river segments. While we calculated high PLGA releases of 2.24 and 2.03 kg/year in large cities such as Geneva or Zurich, the resulting local PECs of 220 and 660 pg/l, respectively, were low due to the high river discharge (330 and 97 m³/s). High PLGA concentrations (up to 7,900 pg/l) on the other hand were calculated around smaller cities with local hospitals but also smaller receiving rivers (between 0.7 and 1.9 m³/s). Therefore, we conclude that population density does not accurately predict local concentration hotspots of NBMs, such as PLGA, that are administered in a hospital context. In addition, even at the locations with the highest predicted PLGA concentrations, the expected risk is low.
Show more [+] Less [-]Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice
2021
Yan, Jin | Wang, Dezhen | Meng, Zhiyuan | Yan, Sen | Teng, Miaomiao | Jia, Ming | Li, Ruisheng | Tian, Sinuo | Weiss, Carsten | Zhou, Zhiqiang | Zhu, Wentao
The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.
Show more [+] Less [-]Neodymium-containing contrast induces mummification of neutrophil granulocytes
2020
Pleskova, Svetlana | Kryukov, Ruslan | Boryakov, Alexey | Gorshkova, Ekaterina
Recently, chemical compounds containing lanthanides were used in various fields of biology and medicine. It has been described that such compounds can be applied in scanning electron microscopy (SEM) to increase the contrast and simplify the sample preparation process due to the process of replacing calcium with lanthanides in cell. However cell death by different mechanisms under influence of lanthanides seems possible. Here, we described that mummification process is a cell death physiologically realized in time: some time after lanthanide contrasting, the cell remains metabolically active and is able to biochemically transform neodymium-containing contrast, oxidize it and form large agglomerates. A distinctive feature of mummification induced by neodymium-containing contrast (NCC) is the formation of a high-rigid oxygen-containing “shield” on the surface of a neutrophil granulocyte.
Show more [+] Less [-]Morpho-physiological responses by Isochrysis galbana Parke to different concentrations of oxytetracycline
2020
Moro, Isabella | Trentin, Riccardo | Moschin, Emanuela | Dalla Vecchia, Francesca
The pollution of aquatic bodies by pharmaceutical compounds is an emerging environmental problem, with little explored consequences. Oxytetracycline (OTC) is an antibiotic used for treatment of infections caused by a variety of microorganisms and it is widely employed in medicine, livestock husbandry and aquaculture. This pharmaceutical compound may cause deleterious effects on non-target aquatic organisms as microalgae. The objective of this study was to evaluate the effects of OTC on growth, pigment content and morpho-physiology of the microalga Isochrysis galbana Parke. The results highlighted that OTC exposure inhibited the growth of I. galbana in cultures treated with OTC 5.0 and 10.0 mg/L after 3 days and in cultures treated with OTC 5.0, 7.5 and 10.0 mg/L after 5 days. Effects of OTC on cells ultrastructure and physiology consisted in large cytoplasmic lipid inclusions and in a decrease of photosynthetic pigments amount.
Show more [+] Less [-]Airborne antibiotic resistance genes in Hong Kong kindergartens
2020
Li, Na | Chai, Yemao | Ying, Guang-Guo | Jones, K. C. (Kevin C.) | Deng, Wen-Jing
Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) have become a critical global public health issue in this century. There is increasing evidence for the presence and transmission of ARGs by air transmission. In this research, ARGs and ARB in air conditioner filter dust (AC dust) and urine samples from 55 kindergarten children in 17 kindergartens and nearby 10 soil samples in Hong Kong were analyzed. The results showed the presence of 16 ARG subtypes and the mobile genetic element (MGE) intI1 in AC dust, and 12 ARG subtypes in the soil samples. ARGs presenting resistance to sulfonamide (6.9 × 10⁻³–0.17) (expressed as relative abundance of the 16 S rRNA genes) were most abundant followed by macrolides (1.8 × 10⁻³–3.3 × 10⁻²), sul1, sul2 (sulfonamide), ermF (macrolides) and intI1 genes in AC dust in 17 kindergartens. For soil samples, 12 ARG subtypes and the intI1 were detected, and the genes providing resistance to sulfonamide (1.6 × 10⁻³–2.7 × 10⁻¹) were the most abundant ARGs in the 10 soil samples, followed by tetracycline (ND–1.4 × 10⁻²). Multi-resistant bacteria with sul1, sul2, intI1, or tetQ were detected in all AC dust samples and some urine samples. Based on bacterial genera and ARG co-occurrence network analysis and Hong Kong’s special geographical location and cultural environment, there might be two origins for the ARGs detected in the kindergartens: β-lactam/macrolide ARGs mainly derived from human medicine use and tetracycline/sulfonamide ARGs mainly from other areas, as well as IntI1 may play a role in the spread of ARGs in Hong Kong. The widely detection of ARGs in AC dust in kindergartens in Hong Kong highlights the need for the improvement of management measures.
Show more [+] Less [-]A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in North China
2017
Huo, Wenhua | Zhu, Yibing | Li, Zhenjiang | Pang, Yiming | Wang, Bin | Li, Zhiwen
Rare earth elements (REEs) have many applications in industry, agriculture, and medicine, resulting in occupational and environmental exposure and concerns regarding REE-associated health effects. However, few epidemiological studies have examined the adverse effects of REEs on pregnancy outcomes. Therefore, this study examined the relationship between the REE concentrations in maternal hair growing during early pregnancy and the risk of neural tube defects (NTDs) in offspring. We included 191 women with NTD-affected pregnancies (cases) and 261 women delivering healthy infants (controls). The cases were divided into three subtypes: anencephaly, spina bifida, and encephalocele. Four REEs in maternal hair were analyzed by inductively coupled plasma-mass spectrometry: lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). A questionnaire was used to collect information about maternal sociodemographic characteristics and dietary habits. The median concentrations of Ce and Pr in the NTD group were higher than those in the control group, whereas there were no significant differences for La and Nd. The adjusted odds ratios (ORs) for the four REE concentrations above the median in the case groups were not significantly > 1. An increasing frequency of the consumption of beans or bean products and fresh fruit was negatively correlated with the four REE concentrations. Our results did not suggest that the concentrations of REEs in maternal hair were associated with the risk of NTDs or any subtype of NTDs in the general population.
Show more [+] Less [-]Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity
2017
Wang, Yi-Xin | Wang, Peng | Feng, Wei | Liu, Chong | Yang, Pan | Chen, Ying-Jun | Sun, Li | Sun, Yang | Yue, Jing | Gu, Long-Jie | Zeng, Qiang | Lu, Wen-Qing
This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all Ptrend<0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration.
Show more [+] Less [-]Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features
2013
Calabrese, Edward J.
The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30–60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying “upstream” mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response.
Show more [+] Less [-]Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures
2022
Solé, M. | Figueres, E. | Mañanós, E. | Rojo-Solís, C. | García-Párraga, D.
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Show more [+] Less [-]Uncertainty analysis of facemasks in mitigating SARS-CoV-2 transmission
2022
Liu, Fan | Qian, Hua
In the context of global spread of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2), there is a controversial issue on whether the use of facemasks is promising to control or mitigate the COVID-19 transmission. This study modeled the SARS-CoV-2 transmission process and analyzed the ability of surgical mask and N95 in reducing the infection risk with Sobol's analysis. Two documented outbreaks of COVID-19 with no involvers wearing face masks were reviewed in a restaurant in Guangzhou (China) and a choir rehearsal in Mount Vernon (USA), suggesting that the proposed model can be well validated when airborne transmission is assumed to dominate the virus transmission indoors. Subsequently, the uncertainty analysis of the protection efficiency of N95 and surgical mask were conducted with Monte Carlo simulations, with three main findings: (1) the uncertainty in infection risk is primarily apportioned by respiratory activities, virus dynamics, environment factors and individual exposures; (2) wearing masks can effectively reduce the SARS-CoV-2 infection risk to an acceptable level (< 10⁻³) by at least two orders of magnitude; (3) faceseal leakage can reduce protection efficiency by approximately 4% when the infector is speaking or coughing, and by approximately 28% when the infector is sneezing. This work indicates the effectiveness of non-pharmaceutical interventions during the pandemic, and implies the importance of the synergistic studies of medicine, environment, social policies and strategies, etc., on reducing hazards and risks of the pandemic.
Show more [+] Less [-]