Refine search
Results 1-10 of 153
Preliminary results on the occurrence and anatomical distribution of microplastics in wild populations of Nephrops norvegicus from the Adriatic Sea Full text
2021
Martinelli, Michela | Gomiero, Alessio | Guicciardi, Stefano | Frapiccini, Emanuela | Strafella, Pierluigi | Angelini, Silvia | Domenichetti, Filippo | Belardinelli, Andrea | Colella, Sabrina
This study reports the shapes, dimensional classes, types and counts of microplastics (MPs) found in 23 individuals of N. norvegicus collected from two wild populations of the Adriatic Sea (Mediterranean basin). The focus was on three different anatomical compartments (gut, hepatopancreas and tail), which were analysed separately. MPs were found in all the investigated individuals with an average of about 17 MPs/individual. Fragments were predominant over fibers with a ratio of about 3:1. The majority of MPs were in the dimensional range 50–100 μm. The predominant polymers were polyester, polyamide 6, polyvinyl chloride and polyethylene, which together constitute about 61% of all the MPs found. Fragments were more concentrated in the hepatopancreas, with no significant difference between gut and tail, while fibers were more concentrated in the gut than in the tail with hepatopancreas somehow in between. The dimensional class of the MPs influences their anatomical distribution. There were no statistical differences among individuals from the two sampling sites. Sex of the individual did not influence the level of retained MPs, while length had a very marginal effect. The information reported here contributes to understanding of the possible risks linked to human consumption of different tissues from contaminated Norway lobsters.
Show more [+] Less [-]Remediation by waste marble powder and lime of jarosite-rich sediments from Portman Bay (Spain) Full text
2020
Benavente, David | Pla, Concepcion | Valdes-Abellan, Javier | Cremades-Alted, Silvia
We investigate the use of hydrated lime and calcite waste marble powder as remediation treatments of contaminated jarosite-rich sediments from Portman Bay (SE, Spain), one of the most contaminated points in the Mediterranean coast by mining-metallurgical activities. We tested two commercial hydrated limes with different Ca(OH)₂ percentages (28 and 60% for Lime-1 and Lime-2 respectively) and two different waste marble powder, WMP, from the marble industry (60 and 96% of calcite for WMP-1 and WMP-2 respectively). Mixture and column experiments and modelling of geochemical reactions using PHREEQC were performed. Lime caused the precipitation of hematite, gypsum and calcite, whereas WMP treatments formed iron carbonates and hematite. The fraction of amorphous phases was mainly composed of iron oxides, hydroxides and oxyhydroxides that was notably higher in the lime treatment in comparison to the WMP treatment. The reactive surface area showed a positive trend with the amorphous phase concentration. Results highlighted the effectiveness of lime treatments, where Lime-2 showed a complete elimination of jarosite. Column experiments revealed a clear reduction of heavy metal concentration in the lixiviate for the treated sediments compared to the original sediments. Particularly, Lime-2 showed the highest reduction in the peak concentration of Fe, Mn, Zn and Cd. The studied treatments limited the stabilisation of Cr and Ni, whereas contrarily As increases in the treated sediment. PHREEQC calculations showed that the most concentrated heavy metals (Zn and Mn) are stabilized mainly by precipitation whereas Cu, Pb and Cd by a combination of precipitation and sorption processes. This chemical environment leads to the precipitation of stable iron phases, which sorb and co-precipitate considerable amounts of potentially toxic elements. Lime is significantly more effective than WMP, although it is recommended that the pH value of the mixture should remain below 9 due to the amphoteric behaviour of heavy metals.
Show more [+] Less [-]Patterns of mercury exposure and relationships with isotopes and markers of oxidative status in chicks of a Mediterranean seabird Full text
2020
Costantini, David | Bustamante, Paco | Brault-Favrou, Maud | Dell’Omo, Giacomo
The Mediterranean basin is a hotspot of mercury (Hg) contamination owing to intense anthropogenic emissions, volcanic activity and oligotrophic conditions. Little work has been done to assess the sources of Hg exposure for seabirds and, particularly, the physiological consequences of Hg bioaccumulation. In this study, we (i) describe the individual and temporal variation in blood concentration of total Hg (THg) over three breeding seasons, (ii) identify the factors that affect the THg exposure and (iii) determine the individual- and population-level connections between THg and blood-based markers of oxidative status in chicks of Scopoli’s shearwaters (Calonectris diomedea) breeding on the island of Linosa in the southern Mediterranean. We carried out the work on chicks near fledging because they are fed with prey captured near the colony, thus their Hg levels reflect local contamination. The concentration of THg in erythrocytes varied from 0.23 to 4.29 μg g⁻¹ dw. Chicks that were fed upon higher trophic level prey (i.e., higher δ¹⁵N values) had higher THg levels. Individual variation in THg concentrations was not explained by parental identity, sex nor δ¹³C values. There was significant variation in THg among chicks born from the same mother in different years. We found significant correlations between THg and markers of oxidative status; however, these correlations were no longer significant when we took into account the annual variation in mean values of all metrics. Males with higher values of body condition index had higher blood THg, while THg and body condition index were not correlated in females. Our data indicate that THg levels were moderate to high if compared to other seabirds. However, there is little evidence for harmful short-term detrimental effects owing to THg exposure.
Show more [+] Less [-]Determining suitable fish to monitor plastic ingestion trends in the Mediterranean Sea Full text
2019
Bray, Laura | Digka, Nikoletta | Tsangaris, Catherine | Camedda, Andrea | Gambaiani, Delphine | de Lucia, Giuseppe Andrea | Matiddi, Marco | Miaud, Claude | Palazzo, Luca | Pérez-del-Olmo, Ana | Raga, Juan Antonio | Silvestri, Cecilia | Kaberi, Helen
The presence of marine litter is a complex, yet persistent, threat to the health and biodiversity of the marine environment, and plastic is the most abundant, and ubiquitous type of marine litter. To monitor the level of plastic waste in an area, and the prospect of it entering the food chain, bioindicator species are used extensively throughout Northern European Seas, however due to their distribution ranges many are not applicable to the Mediterranean Sea. Guidance published for the Marine Strategy Framework Directive suggests that the contents of fish stomachs may be analyzed to determine trends of marine plastic ingestion. In order to equate transnational trends in marine plastic ingestion, the use of standardized fish species that widely occur throughout the basin is favoured, however for the Mediterranean Sea, specific species are not listed. Here we propose a methodology to assess how effective Mediterranean fish species, that are known to have ingested marine plastic, are as bioindicators. A new Bioindicator Index (BI) was established by incorporating several parameters considered important for bioindicators. These parameters included species distribution throughout the Mediterranean basin, several life history traits, the commercial value of each species, and the occurrence of marine litter in their gut contents. By collecting existing data for Mediterranean fish, ranked scores were assigned to each trait and an average value (BI value) was calculated for each species. Based on their habitat preferences, Engraulis encrasicolus (pelagic), Boops boops (benthopelagic), three species of Myctophidae (Hygophum benoiti, Myctophum punctatum and Electrona risso) (mesopelagic), Mullus barbatus barbartus (demersal) and Chelidonichthys lucerna (benthic), were identified as currently, the most suitable fish for monitoring the ingestion of marine plastics throughout the Mediterranean basin. The use of standardized indicator species will ensure coherence in the reporting of marine litter ingestion trends throughout the Mediterranean Sea.
Show more [+] Less [-]How microplastics quantities increase with flood events? An example from Mersin Bay NE Levantine coast of Turkey Full text
2018
Gündoğdu, Sedat | Çevik, Cem | Ayat, Berna | Aydoğan, Burak | Karaca, Serkan
Floods caused by heavy rain carry significant amounts of pollutants into marine environments. This study evaluates the effect of multiple floods that occurred in the northeastern Mediterranean region in Turkey between December 2016 and January 2017 on the microplastic pollution in the Mersin Bay. Sampling was repeated in four different stations both before and after the flood period, and it was determined that in the four stations, there was an average of 539,189 MPs/km² before the flood, and 7,699,716 MPs/km² afterwards, representing a 14-fold increase. Fourteen different polymer types were detected in an ATR FT-IR analysis, eight of which were not found in samples collected before the floods. The most common polymer type was identified as polyethylene both pre- and post-flood. The mean particle size, which was 2.37 mm in the pre-flood period, decreased to 1.13 mm in the post-flood period. A hydrodynamic modeling study was implemented to hindcast the current structure and the spatial and temporal distributions of microplastics within the study area. In conclusion, heavy rain and severe floods can dramatically increase the microplastic levels in the sea.
Show more [+] Less [-]Joining empirical and modelling approaches to estimate dry deposition of nitrogen in Mediterranean forests Full text
2018
García-Gómez, Héctor | Izquieta-Rojano, Sheila | Aguillaume, Laura | González-Fernández, Ignacio | Valiño, Fernando | Elustondo, David | Santamaría, Jesús M. | Àvila, Anna | Bytnerowicz, Andrzej | Bermejo, Victoria | Alonso, Rocío
In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO₃⁻ and NH₄⁺ with stomatal uptake of NH₃, HNO₃ and NO₂ derived from the DO₃SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha⁻¹ year⁻¹) and at the northeastern sites (17.8 and 12.5 kg N ha⁻¹ year⁻¹) than at the central-Spain site (9.4 kg N ha⁻¹ year⁻¹). On average, the estimated dry deposition of atmospheric N represented 77% ± 2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ± 2.9 kg N ha⁻¹ year⁻¹ for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ± 0.8 kg N ha⁻¹ year⁻¹ (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO₂ to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10–20 kg N ha⁻¹ year⁻¹) was exceeded in three of the four studied forests.
Show more [+] Less [-]Influence of environmental factors on the response of a natural population of Daphnia magna (Crustacea: Cladocera) to spinosad and Bacillus thuringiensis israelensis in Mediterranean coastal wetlands Full text
2010
Duchet, C. | Caquet, Th | Franquet, E. | Lagneau, C. | Lagadic, L.
The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 μg L−1) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti (0.16 and 0.50 μL L-1) as the reference larvicide. Microcosms (125 L) were placed in a shallow temporary marsh where D. magna was naturally present. The peak of salinity observed during the 21-day observation period may have been partly responsible for the decrease of daphnid population density in all the microcosms. It is also probably responsible for the absence of recovery in the microcosms treated with spinosad which caused a sharp decrease of D. magna abundance within the first two days following treatment whereas Bti had no effect. These results suggest that it may be difficult for a field population of daphnids to cope simultaneously with natural (water salinity and temperature) and anthropogenic (larvicides) stressors.
Show more [+] Less [-]A temporal record of microplastic pollution in Mediterranean seagrass soils Full text
2021
Dahl, Martin | Bergman, Sanne | Björk, Mats | Diaz-Almela, Elena | Granberg, Maria | Gullström, Martin | Leiva-Dueñas, Carmen | Magnusson, Kerstin | Marco-Méndez, Candela | Piñeiro-Juncal, Nerea | Mateo Pérez, Miguel Ángel
Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in ²¹⁰Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg⁻¹), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg⁻¹) and Santa Maria (68–362 kg⁻¹). The highest accumulation rate was seen in the Roquetas site (8832 MPP m⁻² yr⁻¹). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution.
Show more [+] Less [-]Diversity and predicted inter- and intra-domain interactions in the Mediterranean Plastisphere Full text
2021
Amaral-Zettler, Linda A. | Ballerini, Tosca | Zettler, Erik R. | Asbun, Alejandro Abdala | Adame, Alvaro | Casotti, Raffaella | Dumontet, Bruno | Donnarumma, Vincenzo | Engelmann, Julia C. | Frère, Laura | Mansui, Jeremy | Philippon, Marion | Pietrelli, Loris | Sighicelli, Maria
This study investigated the biogeography, the presence and diversity of potentially harmful taxa harbored, and potential interactions between and within bacterial and eukaryotic domains of life on plastic debris in the Mediterranean. Using a combination of high-throughput DNA sequencing (HTS), Causal Network Analysis, and Scanning Electron Microscopy (SEM), we show regional differences and gradients in the Mediterranean microbial communities associated with marine litter, positive causal effects between microbes including between and within domains of life, and how these might impact the marine ecosystems surrounding them. Adjacent seas within the Mediterranean region showed a gradient in the microbial communities on plastic with non-overlapping endpoints (Adriatic and Ligurian Seas). The largest predicted inter-domain effects included positive effects of a novel red-algal Plastisphere member on its potential microbiome community. Freshwater and marine samples housed a diversity of fungi including some related to disease-causing microbes. Algal species related to those responsible for Harmful Blooms (HABs) were also observed on plastic pieces including members of genera not previously reported on Plastic Marine Debris (PMD).
Show more [+] Less [-]Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment Full text
2021
Serra-Compte, Albert | Pikkemaat, Mariël G. | Elferink, Alexander | Almeida, David | Diogène, Jorge | Campillo, Juan Antonio | Llorca, Marta | Álvarez-Muñoz, Diana | Barceló, Damià | Rodríguez-Mozaz, Sara
Two different methodologies were combined to evaluate the risks that antibiotics can pose in the environment; i) an effect-based methodology based on microbial growth inhibition and ii) an analytical method based on liquid-chromatography coupled to mass spectrometry (LC-MS). The first approach was adapted and validated for the screening of four antibiotic families, specifically macrolides/β-lactams, quinolones, sulfonamides and tetracyclines. The LC-MS method was applied for the identification and quantification of target antibiotics; then, the obtained results were combined with ecotoxicological data from literature to determine the environmental risk. The two methodologies were used for the analysis of antibiotics in water samples (wastewater, river water and seawater) and biofluids (fish plasma and mollusk hemolymph) in two monitoring campaigns undertaken in the Ebro Delta and Mar Menor Lagoon (both in the Mediterranean coast of Spain). Both approaches highlighted macrolides (azithromycin) and quinolones (ciprofloxacin and ofloxacin) as the main antibiotics in wastewater treatment plant (WWTP) effluents with potential risk for the environment. However, no risk for the aquatic life was identified in the river, lagoon and seawater as antibiotic levels were much lower than those in WWTP effluents. Fish from Ebro River were the organisms presenting the highest antibiotic concentration when compared with bivalves (mussels) from the Mediterranean Sea and gastropods (marine snails) from the Mar Menor Lagoon. The effect-based methodology successfully determined antibiotic risk in wastewater, but its applicability was less clear in environmental waters such as seawater, due to its high detection limits. Improving sample preconcentration could increase the method sensibility. Overall, combination of both methodologies provides comprehensive insights in antibiotic occurrence and risk associated in areas under study.
Show more [+] Less [-]