Refine search
Results 1-10 of 72
Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants Full text
2018
Zhao, Shuyan | Zhou, Tao | Zhu, Lingyan | Wang, Bohui | Li, Ze | Yang, Liping | Liu, Lifen
N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants.
Show more [+] Less [-]Perinatal exposure to low-dose decabromodiphenyl ethane increased the risk of obesity in male mice offspring Full text
2018
Yan, Sen | Wang, Dezhen | Teng, Miaomiao | Meng, Zhiyuan | Yan, Jin | Li, Ruisheng | Jia, Ming | Yao, Chenyang | Sheng, Jing | Tian, Sinuo | Zhang, Renke | Zhou, Zhiqiang | Zhu, Wentao
Decabromodiphenyl Ethane (DBDPE), a kind of new brominated flame retardants (NBFRs) used to replace DecaBDE, has been frequently detected in the environment and human samples. In this study, we explored its toxic effects on male mouse offspring after perinatal exposure to DBDPE. During the perinatal period, pregnant ICR mice were exposed to DBDPE (100 μg/kg body weight) via oral gavage. After weaning, male offspring were fed on a low-fat diet and a high-fat diet, respectively. We measured and recorded body weight, liver weight, and epididymis fat mass, blood biochemical markers, metabolites changes in liver, and gene expression involved in lipid and glucose homeostasis. The results showed that perinatal exposure to DBDPE increased the risk of obesity in mouse offspring and affected triglyceride synthesis, bile secretion, purine synthesis, mitochondrial function and glucose metabolism, furthermore, the use of HFD feeding may further exacerbate these effects. All of these results show that early-life exposure to low doses of DBDPE can promote the development of metabolic dysfunction, which in turn induces obesity.
Show more [+] Less [-]Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea Full text
2018
Lee, Dong Wan | Lee, Hanbyul | Lee, Aslan Hwanhwi | Kwon, Bong-Oh | Khim, Jong Seong | Yim, Un Hyuk | Kim, Beom Seok | Kim, Jae Jin
The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.
Show more [+] Less [-]Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil Full text
2018
Wang, Xiao-Han | Luo, Wei-Wei | Wang, Qi | He, Lin-Yan | Sheng, Xia-Fang
This study characterized the effect of the metal(loid)-resistant bacteria Ralstonia eutropha Q2-8 and Exiguobacterium aurantiacum Q3-11 on Cd and As accumulation in wheat grown in Cd- and As-polluted soils (1 mg kg−1 of Cd + 40 mg kg−1 of As and 2 mg kg−1 of Cd + 60 mg kg−1 of As). The influence of strains Q2-8 and Q3-11 on water-soluble Cd and As and NH4+concentration and pH in the soil filtrate were also analyzed. Inoculation with these strains significantly reduced wheat plant Cd (12–32%) and As (9–29%) uptake and available Cd (15–28%) and As (22–38%) contents in rhizosphere soils compared to the controls. Furthermore, these strains significantly increased the relative abundances of the arsM bacterial As metabolism gene and of Fe- and Mn-oxidizing Leptothrix species in rhizosphere soils. Notably, these strains significantly reduced water-soluble Cd and As concentrations and increased pH and NH4+ concentration in the soil filtrate. These results suggest that these strains increased soil pH and the abundance of genes possibly involved in metal(loid) unavailability, resulting in reduced wheat Cd and As accumulation and highlight the possibility of using bacteria for in situ remediation and safe production of wheat or other food crops in metal(loid)-polluted soils.
Show more [+] Less [-]Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine Full text
2018
Ben Mordechay, Evyatar | Tarchitzky, Jorge | Chen, Y. (Yona) | Shenker, Moshe | Chefetz, Benny
Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant.
Show more [+] Less [-]Environmental concentrations of antibiotics impair zebrafish gut health Full text
2018
Zhou, Li | Limbu, Samwel Mchele | Shen, Meilin | Zhai, Wanying | Qiao, Fang | He, Anyuan | Du, Zhen-Yu | Zhang, Meiling
Antibiotics have been widely used in human and veterinary medicine to both treat and prevent disease. Due to their high water solubility and low bioavailability, many antibiotic residues have been found in aquatic environments. Fish are an indispensable link between the environmental pollution and human health. However, the chronic effects of environmental concentrations of antibiotics in fish have not been thoroughly investigated. Sulfamethoxazole (SMX) and oxytetracycline (OTC) are frequently detected in aquatic environments. In this study, zebrafish were exposed to SMX (260 ng/L) and OTC (420 ng/L) for a six-week period. Results indicated that exposure to antibiotics did not influence weight gain of fish but increased the metabolic rate and caused higher mortality when treated fish were challenged with Aeromonas hydrophila. Furthermore, exposure to antibiotics in water resulted in a significant decrease in intestinal goblet cell numbers, alkaline phosphatase (AKP), acid phosphatase (ACP) activities, and the anti-oxidant response while there was a significant increase in expression of inflammatory factors. Antibiotic exposure also disturbed the intestinal microbiota in the OTC-exposed group. Our results indicated that environmental antibiotic concentrations can impair the gut health of zebrafish. The potential health risk of antibiotic residues in water should be evaluated in the future.
Show more [+] Less [-]Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics Full text
2018
Song, Yue | Chai, Tingting | Yin, Zhiqiang | Zhang, Xining | Zhang, Wei | Qian, Yong-Zhong | Qiu, Jing
Ibuprofen (IBU), as a commonly used non-steroidal anti-inflammatory drug (NSAID) and pharmaceutical and personal care product (PPCP), is frequently prescribed by doctors to relieve pain. It is widely released into environmental water and soil in the form of chiral enantiomers by the urination and defecation of humans or animals and by sewage discharge from wastewater treatment plants. This study focused on the alteration of metabolism in the adult zebrafish (Danio rerio) brain after exposure to R-(-)-/S-(+)-/rac-IBU at 5 μg L−1 for 28 days. A total of 45 potential biomarkers and related pathways, including amino acids and their derivatives, purine and its derivatives, nucleotides and other metabolites, were observed with untargeted metabolomics. To validate the metabolic disorders induced by IBU, 22 amino acids and 3 antioxidant enzymes were selected to be quantitated and determined using targeted metabolomics and enzyme assay. Stereoselective changes were observed in the 45 identified biomarkers from the untargeted metabolomics analysis. The 22 amino acids quantitated in targeted metabolomics and 3 antioxidant enzymes determined in enzyme assay also showed stereoselective changes after R-(-)-/S-(+)-/rac-IBU exposure. Results showed that even at a low concentration of R-(-)-/S-(+)-/rac-IBU, disorders in metabolism and antioxidant defense systems were still induced with stereoselectivity. Our study may enable a better understanding of the risks of chiral PPCPs in aquatic organisms in the environment.
Show more [+] Less [-]Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants Full text
2018
Hou, Xingwang | Yu, Miao | Liu, Aifeng | Li, Yanlin | Ruan, Ting | Liu, Jiyan | Schnoor, Jerald L. | Jiang, Guibin
As the metabolites of tetrabromobisphenol A (TBBPA), tetrabromobisphenol A mono- and di-methyl ethers (TBBPA MME and TBBPA DME) have been detected in various environmental media. However, knowledge of the contribution of plants to their environmental fates, especially to the interactions between TBBPA DME and TBBPA, is quite limited. In this study, the metabolism and behaviors of TBBPA DME was studied with pumpkin plants through 15-day hydroponic exposure. The TBBPA were also studied separately using in-lab hydroponic exposure for comparison. The results showed that more TBBPA DME accumulated in pumpkin roots and translocated up to stems and leaves compared with TBBPA. Transformation of TBBPA DME occurred later and more slowly than that of TBBPA. Interconversion between TBBPA DME and TBBPA was verified in intact plants for the first time. Namely, TBBPA DME can be biotransformed to TBBPA MME (transformation ratio in mole mass, TRMM 0.50%) and to TBBPA (TRMM 0.53%) within pumpkin; and TBBPA can be biotransformed to TBBPA MME (TRMM 0.58%) and to TBBPA DME (TRMM 0.62%). In addition, two single benzene-ring metabolites, 2,6-dibromo-4-(2-(2-hydroxyl)-propyl)-anisole (DBHPA, TRMM 3.4%) with an O-methyl group and 2,6-dibromo-4-(2-(2-hydroxyl)-propyl)-phenetole (DBHPP, TRMM 0.57%) with an O-ethyl group, were identified as the transformation products in the TBBPA exposure experiments. The transformation and interconversion from TBBPA DME back to TBBPA is reported as a new pathway and potential source for TBBPA in the environment.
Show more [+] Less [-]Endoplasmic reticulum stress mediates 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT)-induced toxicity and liver lipid metabolism changes in Nile tilapia (Oreochromis niloticus) Full text
2018
Su, Yujie | Li, Huifeng | Xu, Chang | Wang, Xiaodan | Xie, Jia | Qin, Jian G. | Chen, Liqiao | Li, Erchao
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main active ingredient in an emerging water environment antifoulant, the toxicity and environmental impacts of which need to be further investigated. Thus, this study examined the toxicity of DCOIT on Nile tilapia (Oreochromis niloticus), including its effects on behavior, respiration and energy metabolism as well as the role of endoplasmic reticulum stress (ER stress) in mediating its toxicity and metabolic changes. The changes in fish behavior, respiration, neuronal signal transmission, energy metabolism, ER stress, and liver histology were examined via acute (4 days) and chronic (28 days) exposures to 0, 3, 15, 30 μg/L DCOIT in vivo. Additionally, ER stress levels were measured in 24-h periods of hepatocyte exposure to 0, 3, 15, 30 and 300 μg/L DCOIT in vitro. The hyper-locomotor activities decreased, but the respiration rate increased after a 4-day acute exposure period, indicating that DCOIT exposure altered fish energy metabolism. After acute exposure at a low DCOIT concentration, the activation of ER stress induced triglyceride accumulation in the liver. After chronic exposure for 28 days, the prolonged ER stress induced a series of pathological cellular changes. At the cellular level, exposure to a high DCOIT concentration induced ER stress in the hepatocytes. In addition, as a neurotoxin, DCOIT has the potential to disrupt the neurotransmission of the cholinergic system, resulting in motor behavior disruption. This study demonstrates that DCOIT plays a role in time- and concentration-dependent toxicity and that changes in lipid metabolism are directly related to endoplasmic reticulum function after exposure to an antifouling agent. This work advances the understanding of the toxic mechanism of DCOIT, which is necessary for its evaluation.
Show more [+] Less [-]In vitro effects of virgin microplastics on fish head-kidney leucocyte activities Full text
2018
Espinosa, Cristóbal | García Beltrán, José María | Esteban, María Angeles | Cuesta Arranz, Alberto
Microplastics are well-documented pollutants in the marine environment that result from production or fragmentation of larger plastic items. The knowledge about the direct effects of microplastics on immunity, including fish, is still very limited. We investigated the in vitro effects of microplastics [polyvinylchloride (PVC) and polyethylene (PE)] on gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) head-kidney leucocytes (HKLs). After 1 and 24 h of exposure of HKLs with 0 (control), 1, 10 and 100 mg mL⁻¹ MPs in a rotatory system, cell viability, innate immune parameters (phagocytic, respiratory burst and peroxidase activities) and the expression of genes related to inflammation (il1b), oxidative stress (nrf2, prdx3), metabolism of xenobiotics (cyp1a1, mta) and cell apoptosis (casp3) were studied. Microplastics failed to affect the cell viability of HKLs. In addition, they provoke very few significant effects on the main cellular innate immune activities, as decrease on phagocytosis or increase in the respiratory burst of HKLs with the highest dose of microplastics tested. Furthermore, microplastics failed to affect the expression of the selected genes on sea bass or seabream, except the nrf2 which was up-regulated in seabream HKLs incubated with the highest doses. Present results seem to suggest that continue exposure of fish to PVC or PE microplastics could impair fish immune parameters probably due to the oxidative stress produced in the fish leucocytes.
Show more [+] Less [-]