Refine search
Results 1-10 of 1,084
Phytoremediation of Tetracycline and Degradation Products from Aqueous Solutions
2018
Topal, Murat | Öbek, Erdal | Uslu Şenel, Gülşad | Arslan Topal, E.Işıl
The present study aims at phytoremediation of Lemna gibba L. in aqueous solutions with different concentrations of TC and Degradation Products (DPs). It also tries to determine whether there are differences in TC, ETC, EATC, and ATC levels, accumulated by Lemna gibba L. Exposure concentrations of 50, 100, and 300 ppb have been selected for TC and DPs, showing that the highest TC50, TC100, and TC300 concentrations in the plant have been 23.5+1.1, 80.1+3.9, and 274+13 ppb, respectively, while the highest ETC50, ETC100, and ETC300 have proven to be 39.5+1.9, 47.8+2.4, and 168+8.4 ppb, respectively. The highest EATC50, EATC100, and EATC300 concentrations in the plant have been 45.3+2.3; 65+3.0 and 173+9.0 ppb, respectively, whereas the highest ATC50, ATC100, and ATC300 concentrations in Lemna gibba L. have been 34.7+1.7, 39.6+0.2, and 114+5.6 ppb, respectively. TC, ETC, EATC, and ATC concentrations in Lemna gibba L. have increased with the increase of initial TC, ETC, EATC, and ATC concentration.
Show more [+] Less [-]Clearance of atrazine in soil describing xenobiotic behavior.
1996
Hari T. | Arx R. von | Ammon H.U. | Karlaganis G.
Evaluation of fate and exposure models - Fate of pulp mill effluent compounds in a Finnish watercourse.
1994
Trapp S. | Rantio T. | Paasivirta J.
Chloroorganic chemicals emitted from the pulp and paper mill at Nekoski in central Finland were monitored for several years. Concentration time series are used for evaluating the environmental fate and the applicability and validity of an exposure models. Fitted elimination rates of 3,4,5-Tri-, 4,5,6-Tri-, Tetrachloroguaiacol and 2,4,6-Trichlorophenol are approx. 0.22 per day, or rather the half-lives are approx. 3 days. The elimination is most likely by biodegradation and transport-controlled. For 2,3,6-trichloro-p-cymene, fate simulations indicate significant volatilization and sedimentation. Good agreement is achieved with a one-dimensional steady-state box model, except for concentrations in fish. For a reliable assessment of environmental damage, laboratory experiments, monitoring and simulations need to be in tune.
Show more [+] Less [-]Uptake of terbuthylazine and its medium polar metabolites into maize plants.
1995
Gayler S. | Trapp S. | Matthies M. | Schroll R. | Behrendt H.
Progestagens for human use. Exposure and hazard assessment for the aquatic environment
2009
Besse, J.P. | Garric, J. | Biologie des écosystèmes aquatiques (UR BELY) ; Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | Little information is available on the environmental occurrence and ecotoxicological effects of pharmaceutical gestagens released in the aquatic environment. Since eighteen different gestagens were found to be used in France, preliminary exposure and hazard assessment were done. Predicted environmental concentrations (PECs) suggest that if parent gestagens are expected to be found in the ng l−1 range, some active metabolites could be present at higher concentrations, although limited data on metabolism and environmental fate limit the relevance of PECs. The biological effects are not expected to be restricted to progestagenic activity. Both anti-androgenic activity (mainly for cyproterone acetate, chlormadinone acetate and their metabolites) and estrogenic activity (mainly for reduced metabolites of levonorgestrel and norethisterone) should also occur. All these molecules are likely to have a cumulative effect among themselves or with other xenoestrogens. Studies on occurrence, toxicity and degradation time are therefore needed for several of these compounds.
Show more [+] Less [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
International audience | Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Show more [+] Less [-]A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota
2022
Meng, Zhiyuan | Sun, Wei | Liu, Wan | Wang, Yu | Jia, Ming | Tian, Sinuo | Chen, Xiaojun | Zhu, Wentao | Zhou, Zhiqiang
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota–dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
Show more [+] Less [-]Potential urinary biomarkers in young adults with short-term exposure to particulate matter and bioaerosols identified using an unbiased metabolomic approach
2022
Li, Guang-xi | Duan, Yuan-yuan | Wang, Yi | Bian, Ling-jie | Xiong, Meng-ran | Song, Wen-pin | Zhang, Xia | Li, Biao | Dai, Yu-long | Lu, Jia-wei | Li, Meng | Liu, Zhi-guo | Liu, Shi-gang | Zhang, Li | Yao, Hong-juan | Shao, Rong-guang | Li, Liang
Numerous epidemiological studies have shown a close relationship between outdoor air pollution and increased risks for cancer, infection, and cardiopulmonary diseases. However, very few studies have investigated the potential health effects of coexposure to airborne particulate matter (PM) and bioaerosols through the transmission of infectious agents, particularly under the current circumstances of the coronavirus disease 2019 pandemic. In this study, we aimed to identify urinary metabolite biomarkers that might serve as clinically predictive or diagnostic standards for relevant diseases in a real-time manner. We performed an unbiased gas/liquid chromatography-mass spectroscopy (GC/LC-MS) approach to detect urinary metabolites in 92 samples from young healthy individuals collected at three different time points after exposure to clean air, polluted ambient, or purified air, as well as two additional time points after air repollution or repurification. Subsequently, we compared the metabolomic profiles between the two time points using an integrated analysis, along with Kyoto Encyclopedia of Genes and Genomes-enriched pathway and time-series analysis. We identified 33 and 155 differential metabolites (DMs) associated with PM and bioaerosol exposure using GC/LC-MS and follow-up analyses, respectively. Our findings suggest that 16-dehydroprogesterone and 4-hydroxyphenylethanol in urine samples may serve as potential biomarkers to predict or diagnose PM- or bioaerosol-related diseases, respectively. The results indicated apparent differences between PM- and bioaerosol-associated DMs at five different time points and revealed dynamic alterations in the urinary metabolic profiles of young healthy humans with cyclic exposure to clean and polluted air environments. Our findings will help in investigating the detrimental health effects of short-term coexposure to airborne PM and bioaerosols in a real-time manner and improve clinically predictive or diagnostic strategies for preventing air pollution-related diseases.
Show more [+] Less [-]Human biomonitoring survey (Pb, Cd, As, Cu, Zn, Mo) for urban gardeners exposed to metal contaminated soils
2022
Petit, Jérôme C.J. | Maggi, Patrick | Pirard, Catherine | Charlier, Corinne | Ruttens, Ann | Liénard, Amandine | Colinet, Gilles | Remy, Suzanne
Eighty eight adult gardeners and their relatives volunteered to provide urine and blood samples for a human biomonitoring survey among users of one of the biggest allotment garden from Wallonia, showing high trace metal(oid) concentrations in soils. The purpose was to determine if environmental levels of lead (Pb), cadmium (Cd) and arsenic (As) led to concentrations of potential health concern in the study population. Blood and urine biomarkers were compared to reference and intervention cut-off values selected from the literature. The study population exhibited (i) moderately high blood lead levels with median value of 23.1 μg/L, (ii) high urinary concentrations of speciated As (inorganic arsenic and its metabolites) with a median value of 7.17 μg/g.cr., i.e. twice the median values usually observed in general populations, and (iii) very high Cd levels in urine with a median value of 1.23 μg/L, in the range of 95th-97.5th percentiles measured in general adult populations. Biomarker levels in the study population were also mostly above those measured in adults from local populations living on contaminated soils, as reported in the current literature. All biomarkers of Pb, Cd and As showed weak to strong statistically significant correlations, pointing towards a joint environmental source to these three contaminants as being at least partially responsible for the high exposure levels observed. Urine and blood biomarkers show statistically significant associations with variables related to individual characteristics (age, smoking status, …) and Pb domestic sources (Pb pipes, cosmetics, …) but involves also behavioral and consuming habits related to gardening activities on the contaminated allotment garden. At such levels, owing to co-exposure and additive effects of Cd, As and Pb regarding renal toxicity known from literature, the study strongly suggests that this population of gardeners is at risk with respect to chronic kidney diseases.
Show more [+] Less [-]The longitudinal biomonitoring of residents living near the waste incinerator of Turin: Polycyclic aromatic hydrocarbon metabolites after three years from the plant start-up
2022
Iamiceli, A.L. | Abate, V. | Bena, A. | De Filippis, Sp | De Luca, S. | Iacovella, N. | Farina, E. | Gandini, M. | Orengia, M. | De Felip, E. | Abballe, A. | Dellatte, E. | Ferri, F. | Fulgenzi, Ar | Ingelido, A.M. | Ivaldi, C. | Marra, V. | Miniero, R. | Crosetto, L. | Procopio, E. | Salamina, G.
The waste-to-energy (WTE) incinerator plant located in the Turin area (Italy) started to recover energy from the combustion of municipal solid waste in 2013. A health surveillance program was implemented to evaluate the potential health effects on the population living near the plant. This program included a longitudinal biomonitoring to evaluate temporal changes of some environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs), in residents living in areas near the Turin incinerator (exposed group, E) compared to those observed in subjects living far from the plant (not exposed group, NE). Ten monohydroxy-PAHs (OH-PAHs), consisting in the principal metabolites of naphthalene, fluorine, phenanthrene, and pyrene, were analyzed in urines collected from the E and NE subjects after one (T₁) and three years (T₂) of plant activity and compared with those determined in the same cohort established before the plant start-up (T₀). Spearman correlation analysis was undertaken to explore possible associations between OH-PAHs and personal characteristics, lifestyle variables, and dietary habits. A linear mixed model (LMM) approach was applied to determine temporal trends of OH-PAHs observed in the E and NE subjects and to evaluate possible differences in trend between the two groups. Temporal trends of OH-PAHs determined by LMM analysis demonstrated that, at all times, the E group had concentrations lower than those assessed in the NE group, all other conditions being equal. Moreover, no increase in OH-PAH concentrations was observed at T₁ and T₂ either in E or in NE group. Significant positive correlations were found between all OH-PAHs and smoking habits. Regarding variables associated to outdoor PAH exposure, residence near high traffic roads and daily time in traffic road was positively correlated with 1-hydroxynaphthalene and 1-hydroxypyrene, respectively. In conclusion, no impact of the WTE plant on exposure to PAHs was observed on the population living near the plant.
Show more [+] Less [-]