Refine search
Results 1-10 of 1,000
Anthropogenic share of metal contents in soils of urban areas
2018
Fazeli, G. | Karbassi, A.R. | khoramnejadian, Sh. | Nasrabadi, T.
In the present investigation, 41 soil samples were subjected to single step chemical partitioning to assess the lithogenic and non-lithogenic portions of metals in Tehran's soils. The share of various studied metals in the anthropogenic portion ranges from as low as 0.2% to as high as 85% of bulk concentration. Geo-accumulation index (Igeo) showed that Cd falls within "heavily contaminated" soils. It might be inferred that Ni, Cu, Cr, Zn, Co and Ca fall within "Deficient to minimal" class in accordance with enrichment factor (EF) classification.. Enrichment factor values (to some extents) match with the chemical partition studies results (except for Ni and Cr). The very low Ca content of soil samples could be indicative of low biological productivity in the Tehran's soil. Also the very low concentrations of Mn could be indicative of reducing environment in soils of Tehran.
Show more [+] Less [-]Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions
2017
Abbaslou, Hakime | Bakhtiari, Somayeh
The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, with the majority of trees being ailanthus and eucalyptus. Amounts of Cd, Pb, Zn, Cu, and Mn have initially been at toxic levels which declined after cultivation. Fibrous clay minerals have been added to soils as a natural adsorbent to adsorb heavy metals like Pb, Cd, Zn, and Mn. Accumulation of the elements in the roots and shoots has been in the following order: Cu>Zn>Mn>Cd>Pb>Fe. The organ metal concentrations have not statistically translocated from roots to shoots of plants, except for Zn and Cu whose concentrations have been significantly higher in roots. Eucalyptus is well capable of extracting elements from contaminated soils, compared to ailanthus, particularly in case of Cu and Cd. The percentage of mycorrhizal colonization proves to be more in pots with ailanthus plants grown in contaminated soil, suggesting enhanced effect of high metal concentrations on plant infection by G. mosseae. AMF assists soil remediation by enhancing the growth and retention of toxic elements by ailanthus, while no substantial change has been observed between inoculated and non-inoculated eucalyptus plants by AFM, regarding translocation of elements to plants. The possibility of increasing metal accumulation in roots is interesting for phytoremediation purposes, since most high-producing biomass plants, such as eucalyptus, retain heavy metals in roots.
Show more [+] Less [-]Metal Signature of Atmospheric Aerosol from Kochi, the Queen of Arabian Sea, Kerala, India
2016
K, Gayathree Devi | P.S., Akhil | C.H., Sujatha
The present research article highlights the metal (Cd, Cu, Pb, Zn and Fe)distribution pattern in the RSPM generated in different hot spot sites located at Kochi, theQueen of Arabian Sea. These sampling sites are categorized under three different zonesas estuarine, riverine, and coastal. Two sampling phases are selected in order to check theconsistency in pollution trend after a two year gap and are described in Phase I and PhaseII, respectively. Metals are noticed to be intensely concentrated in the post monsoonmonths in both phases. Among the metals, Fe is revealed as the prominent metal at theestuarine sites. Estuarine and riverine zone expresses the overall enrichment pattern withslight difference at coastal regime in phase I. In phase II, insignificant metal load withirregular pattern is observed. Source apportionment study reveals that major sources ofmetals are from automobile exhausts and the estuarine zone is entangled with 45.9%.
Show more [+] Less [-]Protocole d' etude de la retombee de polluants metalliques dans le milieu marin dans le cadre du programe ATMOS de la Commission de Paris.
1994
Le Bihan A. | Cabon J.Y. | Tymen G.
Air pollution: significance of pulmonary dust deposits in bovine species.
1984
Dogra R.K.S. | Shanker R. | Saxena A.K. | Khanna S. | Srivastava S.N. | Shukla L.J. | Zaidi S.H.
Trace metals transport and behaviour in the Mediterranean estuary of Acheloos river.
1997
Dassenakis M. | Scoullos M. | Gaitis A.
Spatial and sex differences in mercury contamination of skuas in the Southern Ocean
2022
Mills, William, | Ibañez, Andrés, | Bustamante, Paco | Carneiro, Ana, | Bearhop, Stuart | Cherel, Yves | Mariano-Jelicich, Rocío | Mcgill, Rona, | Montalti, Diego | Votier, Stephen, | Phillips, Richard,
Antarctic marine ecosystems are often considered to be pristine environments, yet wildlife in the polar regions may still be exposed to high levels of environmental contaminants. Here, we measured total mercury (THg) concentrations in blood samples from adult brown skuas Stercorarius antarcticus lonnbergi (n = 82) from three breeding colonies south of the Antarctic Polar Front in the Southern Ocean (southwest Atlantic region): (i) Bahía Esperanza/Hope Bay, Antarctic Peninsula; (ii) Signy Island, South Orkney Islands; and, (iii) Bird Island, South Georgia. Blood THg concentrations increased from the Antarctic Peninsula towards the Antarctic Polar Front, such that Hg contamination was lowest at Bahía Esperanza/Hope Bay (mean ± SD, 0.95 ± 0.45 µg g-1 dw), intermediate at Signy Island (3.42 ± 2.29 µg g-1 dw) and highest at Bird Island (4.47 ± 1.10 µg g-1 dw). Blood THg concentrations also showed a weak positive correlation with δ15N values, likely reflecting the biomagnification process. Males had higher Hg burdens than females, which may reflect deposition of Hg into eggs by females or potentially differences in their trophic ecology. These data provide important insights into intraspecific variation in contamination and the geographic transfer of Hg to seabirds in the Southern Ocean.
Show more [+] Less [-]Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils
2014
Lévèque, Thibaut | Capowiez, Yvan | Schreck, Eva | Xiong, Tiantian | Foucault, Yann | Dumat, Camille | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA) | Centre National de la Recherche Scientifique (CNRS) | Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Société de Traitement Chimique des Métaux - STCM (FRANCE) | École nationale supérieure agronomique de Toulouse (ENSAT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | INSU-EC2CO program; French Agency of the Environment and Energy (ADEME); Chemical Metal Treatments Company (STCM); National Research Agency [ANR-12-0011-VBDU]; ADEME, France
International audience | The influence of earthworm activity on soil-to-plant metal transfer was studied by carrying out six weeks mesocosms experiments with or without lettuce and/or earthworms in soil with a gradient of metal concentrations due to particles fallouts. Soil characteristics, metal concentrations in lettuce and earthworms were measured and soil porosity in the mesocosms was determined. Earthworms increased the soil pH, macroporosity and soil organic matter content due to the burying of wheat straw provided as food. Earthworm activities increased the metals concentrations in lettuce leaves. Pb and Cd concentrations in lettuce leaves can increase up to 46% with earthworm activities ... These results and the low correlation between estimated by CaCl2 and EDTA and measured pollutant phytoavailability suggest that earthworm bioturbation was the main cause of the increase. Bioturbation could affect the proximity of pollutants to the roots and soil organic matter.
Show more [+] Less [-]Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils
2014
Leveque, Thibaut | Capowiez, Yvan | Schreck, Eva | Xiong, Tiantian | Foucault, Yann | Dumat, Camille | Laboratoire Ecologie Fonctionnelle et Environnement (LEFE) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA) | Centre National de la Recherche Scientifique (CNRS) | Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | Société de Traitement Chimique des Métaux - STCM (FRANCE) | École nationale supérieure agronomique de Toulouse (ENSAT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | INSU-EC2CO program; French Agency of the Environment and Energy (ADEME); Chemical Metal Treatments Company (STCM); National Research Agency [ANR-12-0011-VBDU]; ADEME, France
International audience | The influence of earthworm activity on soil-to-plant metal transfer was studied by carrying out six weeks mesocosms experiments with or without lettuce and/or earthworms in soil with a gradient of metal concentrations due to particles fallouts. Soil characteristics, metal concentrations in lettuce and earthworms were measured and soil porosity in the mesocosms was determined. Earthworms increased the soil pH, macroporosity and soil organic matter content due to the burying of wheat straw provided as food. Earthworm activities increased the metals concentrations in lettuce leaves. Pb and Cd concentrations in lettuce leaves can increase up to 46% with earthworm activities ... These results and the low correlation between estimated by CaCl2 and EDTA and measured pollutant phytoavailability suggest that earthworm bioturbation was the main cause of the increase. Bioturbation could affect the proximity of pollutants to the roots and soil organic matter.
Show more [+] Less [-]