Refine search
Results 1-10 of 1,447
COVID-19 Waste as Source of Microplastics in the Environment: Implication for Aquatic Species, Human, and Remediation Measures- A Review Full text
2023
Iheanacho, Stanley | Ogbu, Miracle | Ekpeyoung, Joshua | Tabi, Elizabeth | Iheanacho, Angus | Bhuyan, Md Simul | Ogunji, Johnny
Coronavirus (COVID-19) pandemic ushered in a new era that led to the adjustments of diverse ecosystems. The pandemic restructured the global socio-economic events which prompted several adaptation measures as a response mechanism to cushion the negative impact of the disease pandemic. Critical health safety actions were imperative to curtail the spread of the disease such as wearing personal protective equipment (PPEs), masks, goggles, and using sanitizers for disinfection purposes. The daily demands for the products by individuals and medical personnel heightened their production and consumption, leading to a corresponding increase of COVID-19 wastes in the environment following indiscriminate waste disposal and poor waste management. The persistent occurrence of COVID-19 wastes aggravated microplastics (MPs) contamination in the aquatic ecosystem following the breakdown of PPEs-based plastics via oxidation, fragmentation, and photo-degradation actions. These MPs are transported in the aquatic environment via surface runoff and wind action, apart from discrete sources. MPs' presence in the aquatic systems is not without repercussions. Ingestion of MPs by aquatic organisms can cause several diseases (e.g., poor growth, oxidative distress, neurotoxicity, developmental toxicity, reproductive toxicity, immunotoxicity, and organ toxicity). Humans are at high risk of MPs uptake. Apart from aerial and soil contamination sources, consumption of aquatic food products is a critical pathway of MPs into the human body. MP toxicities in humans include liver disorder, respiratory failure, infertility, hormonal imbalance, diarrhea, developmental disorder, and mortality. Measures to alleviate the effect of COVID-19 waste litters include effective waste management plans and the adoption of technologies to extract cum degrade MPs from the aquatic and terrestrial environment.
Show more [+] Less [-]Distribution Features of Microplastic Particles in the Bolshiye Koty Bay (Lake Baikal, Russia) in Winter Full text
2022
Karnaukhov, Dmitry | Biritskaya, Sofya | Dolinskaya, Ekaterina | Teplykh, Maria | Ermolaeva, Yana | Pushnica, Victoria | Bukhaeva, Lidiya | Kuznetsova, Iya | Okholina, Anastasia | Silow, Eugene
The problem of pollution of aquatic ecosystems with microplastics has been actively studied by the world scientific community. Most of this research has been devoted to marine ecosystems, whereas scant research has been conducted on fresh water bodies. Lake Baikal (Russia) is a unique natural reservoir. Previous studies devoted to the amount of microplastics in the waters of Lake Baikal were carried out singularly and were not of a systemic character; therefore, previously obtained data does not reflect a complete picture of the state of the lake. Within the framework of this study, our goal was to study the composition and morphological structure of microplastic particles in the ice of Lake Baikal at different distances from the coastline. To do this, a number of ice samples were taken from the upper and lower sides at five different points in South Baikal opposite the village of Bolshiye Koty. Later these samples were analyzed for the types of microplastics and their amount. In the samples taken, two types of microplastics were found—fragments and fibers—with fibers being predominant. The median values of the number of microplastics particles are higher in samples taken at the interface between water and ice, compared to samples taken from the ice surface. Presumably, main part of microplastic fibers found opposite the village of Bolshiye Koty were brought in by a constant circular current from the opposite east coast. In turn, the low number of fragments in the samples may be due to the freezing of the coastline.
Show more [+] Less [-]Assessment of Microplastics Distribution and Related Water Quality in an Urban Canal, Thailand Full text
2022
Eamrat, Rawintra | Taweesan, Achara | Pussayanavin, Tatchai
Microplastics pollution has become a matter of global concern because of its effects on aquatic life and the ecosystem. This study investigated the abundance and types of microplastics found in an urban canal of Thailand. Water quality and the relationship between microplastics pollutants and the physicochemical properties of water quality were also analyzed to provide evidence for this study. The mean abundance of microplastics was 370 ± 140 particle(p)/m3. The highest number and concentration of microplastics were found on surface water corelated with urbanization. Transparent brown and transparent colors in the form of film and fiber/lines were the predominant morphology. Polypropylene (PP) and polyethylene (PE) were the most abundant polymer type in all surface water samples. Furthermore, water quality was related with microplastic pollution. The physicochemical properties of turbidity (0.99), conductivity (0.97), total solid (0.95) and biological oxygen demand (0.84) were accounted for greatest influences on microplastics distribution. The estimated equation of microplastics was also closely corelated with water quality. These results demonstrate that microplastic pollution has progressed more in poor water quality than good water quality, indicating that the inflow process and sources of microplastics are similar to those of other pollutants. Therefore, this study is expected to encourage and enforce solid waste and wastewater management policies that prevent microplastics pollution in the environment.
Show more [+] Less [-]Microplastics Abundance, Characteristics, and Risk in Badagry Lagoon in Lagos State, Nigeria Full text
2022
Yahaya, Tajudeen | Abdulazeez, Abdulmalik | Oladele, Esther | Williams, Evelyn | Obadiah, Caleb | Umar, Ja’afar | Salisu, Naziru
Microplastics are widely used to manufacture diverse products such as textiles, skin care products, and household products such as detergents and soaps. However, microplastic pollution and its potential health risks are raising concerns worldwide. This study characterized and determined the safety of microplastics in water and sediments obtained from three locations, namely Ibeshe, Amuwo Odofin, and Ojo along Badagry lagoon, Lagos, Nigeria. The samples of the lagoon's surface water and sediments were treated and analyzed for the abundance of microplastics, as well as their shapes, sizes, and types of polymers. The risk index of the polymers in the microplastics was also estimated. Microplastics were found to be more abundant (p ≤ 0.05) in the sediments (283–315 particles/kg) than in the surface water (108–199 particles/L). In both the water and sediments at all the locations, the dominant shapes were fibers (52%–90%), followed by fragments (3%–32%) and films (1%–25%). In order of significance, the microplastic size range of 0-100µm and 100-500µm dominated the surface water, while the size range of 1000-5000µm and 500-1000µm dominated the sediments at all the locations. The dominant polymers in both the water and sediments at all the locations were polyethylene, polypropylene, and polyamide, while the least was polystyrene. In both the water and sediments at all the locations, the dominant risk score among the polymers is III (moderate risk). The results obtained suggest that microplastic pollution poses environmental and health risks to the lagoon, aquatic organisms, and humans. As such, the lagoon required microplastic remediation and control.
Show more [+] Less [-]Microplastics on Silkworms (Tubifex Spp) in the Brantas River, Indonesia Full text
2024
Eri Wardoyo, Iva Rustanti | Yunior, Yudha | Marlik, Marlik | Kriswandana, Ferry | Nurmayanti, Demes | Khambali, Khambali
Microplastics can contaminate water owing to their small size. If aquatic biota consume microplastics, they disrupt their reproductive processes, digestive tracts, and development. This study aimed to identify microplastic waste from silkworms (Tubifex spp.) in the Brantas River. The study was conducted in a descriptive manner by collecting samples of microplastic waste from silkworms and examining the shape, type, amount, and percentage of microplastic abundance in the river. An FTIR test was used to determine the microplastic content. Using a Zeiss Axio Zoom.V16 at 50x magnification, microplastic particles from individual worms and worm samples were visually identified. Then, the 50% hot needle test was used to determine the composition of the plastic. A total of 263 microplastic particles were found in the worm samples. Silkworms (Tubifex spp.) in the Brantas River, Kediri City, were shown to contain four types of microplastics, namely fibers, filaments, fragments, and granules, which were dominated by filament particles with 49% filament content, 45% fiber, 5% fragments, and 1% granules. The microplastic polymers identified via FTIR were polyethylene and ethylene-polypropylene-diene copolymers. These microplastics can originate from plastic bags, used drinking bottles, rope fibers, and pieces of water hose, which are often found around the Brantas River. Silkworms found in the Brantas River contain microplastic waste from various pollution sources.
Show more [+] Less [-]Assessment of Microplastic Pollution Sources in the Coastal Recreational Zones Full text
2023
Silakov, Mikhail | Sibirtsova, Elena | Temnykh, Alexandra
The authors propose a methodology for assessing the sources of microplastic pollution (particles 0.5-5 mm in size), which makes it possible to differentiate coastal recreational areas according to the degree of vulnerability to microplastic accumulation. The methodology takes into account the sources of microplastics coming to the beach directly from vacationers - factors of recreational activities, as well as the influence of factors of the adjacent territory: the type of adjacent territory, saturation with transport infrastructure, etc. An analysis of the results of monitoring the microplastic concentration in beach and bottom sediments of seven beaches of the Sevastopol region with varying degrees of anthropogenic load during 2018–2020, as well as an assessment of the sources of microplastic pollution on these beaches using the proposed methodology, made it possible to differentiate these coastal recreational areas according to the degree of vulnerability to accumulation of microplastic pollution. The most vulnerable are the beaches that are actively visited by tourists and located in close proximity to large blocks of apartment buildings and extensive transport infrastructure (Pesochniy and Omega). The beaches Konstantinovsky and Goryachka (placed close tothe thermal power station), located in the zone of active navigation of ships of various tonnage, are confined to areas of low and moderate pollution. The main stream of vacationers on them are local residents with a high turnover rate. The least vulnerable are the beaches with park areas: Uchkuevka, Solnechny and Zolotoy. The source of microplastic pollution on these beaches is mainly vacationers.
Show more [+] Less [-]Presence of Microplastics in Freshwater Ecosystems: An Unheeded Emerging Concern – A Global Review Full text
2022
Mukhopadhyay, Patralika | Arkkakadavil Valsalan, Shibu
Plastic production has inevitably increased in the past few decades and is one of the diverse material used in today’s world. With this increasing production and wider use, the aquatic ecosystems have become the trash barrel for all kinds of plastic resulting in it becoming a looming spectre to the habitat and functions of both inland and offshore ecosystems. Plastic pollution is considered as an emerging global environmental concern which could significantly affect the biological diversity and may have potential to cause inimical effects on human health. These plastics have shown to gradually degrade into micro fragments and are reported to cause toxic effects on the aquatic organisms. In comparison to the studies on presence of microplastic in marine ecosystems, the studies on the presence of it in freshwater ecosystems have received relatively lesser attention although some studies have shown that the contamination is as grievous as that of in marine environment. This review article focuses on the literature available on the reports of microplastic occurrence, its distribution in freshwater ecosystems across the world and its insidious effects which are of emerging concern. The effect of such microplastic ingestion in both aquatic organisms and the potential health hazards due to such plastic consumption in humans have also been examined. The paper also discusses the existing knowledge gaps so that future research directions can be taken accordingly and the findings in this paper would significantly help all the countries across the world to understand the present plastic pollution scenario and work towards the mitigation of the same.
Show more [+] Less [-]The dark side of artificial greening: Plastic turfs as widespread pollutants of aquatic environments Full text
2023
de Haan, William P. | Quintana Sepúlveda, Rocío | Vilas, César | Cózar Cabañas, Andrés | Canals, Miquel | Uviedo, Oriol | Sanchez-Vidal, Anna | Biología
Artificial turf (AT) is a surfacing material that simulates natural grass by using synthetic, mainly plastic, fibers in different shapes, sizes and properties. AT has spread beyond sports facilities and today shapes many urban landscapes, from private lawns to rooftops and public venues. Despite concerns regarding the impacts of AT, little is known about the release of AT fibers into natural environment. Here, for the first time, we specifically investigate the presence of AT fibers in river and ocean waters as major conduits and final destination of plastic debris transported by water runoff. Our sampling survey showed that, AT fibers – composed mainly of polyethylene and polypropylene – can constitute over 15% of the mesoplastics and macroplastics content, suggesting that AT fibers may contribute significantly to plastic pollution. Up to 20,000 fibers a day flowed down through the river, and up to 213,200 fibers per km2 were found floating on the sea surface of nearshore areas. AT, apart from impacting on urban biodiversity, urban runoff, heat island formation, and hazardous chemical leaching, is a major source of plastic pollution to natural aquatic environments.
Show more [+] Less [-]Trapped microplastics within vertical redeposited sediment: Experimental study simulating lake and channeled river systems during resuspension events Full text
2023
Constant, Mel | Alary, Claire | Weiss, Lisa | Constant, Alix | Billon, Gabriel | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Centre for Materials and Processes (CERI MP - IMT Nord Europe) ; Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT) | Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Trapped microplastics within vertical redeposited sediment: Experimental study simulating lake and channeled river systems during resuspension events Full text
2023
Constant, Mel | Alary, Claire | Weiss, Lisa | Constant, Alix | Billon, Gabriel | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Centre for Materials and Processes (CERI MP - IMT Nord Europe) ; Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT) | Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
International audience | Plastic waste and its fragments (microplastics; <5 mm) have been observed in almost all types of environments. However, the mechanisms underlying the flow and transport processes of plastics are unknown. This is particularly valid for river sediments, where complex interactions occur between particles and influence their vertical and horizontal distribution patterns. In this study, we investigated the vertical redistribution of 14 pristine microplastics (MPs) with different densities, sizes, and shapes within disturbed sediment without lateral transport (i.e., low-velocity flow). MPs were spiked into sediments (height: 8 cm) in a column with a height of 1 m (diameter: 6 cm) filled to the top with water. The sediment was perturbed by turning the column upside-down to simulate remobilization and the subsequent deposition of sediment. After the complete sedimentation of the particles, the water column was filtered and the sediment was cut into vertical sections. MPs were then extracted from the sediment using sieves and a density separation method, and were counted under a stereomicroscope. Low-density polymers were mainly recovered in the water column and at the surface of the sediment, whereas high-density polymers were found within all sediment sections. The vertical distribution of high-density polymers changes primarily with the sediment grain size. The distribution of each polymer type changes depending on the size and/or shape of the particles with complex interactions. The observed distributions were compared with the expected distributions based only on the vertical velocity formulas. Overall, the formulas used did not explain the sedimentation of a portion of low-density polymers and predicted a lower distribution in the sediment than those observed in the experiment. In conclusion, this study highlights the importance of considering MPs as multi-dimensional particles and provides clues to understand their fate in lowvelocity flow systems, considering that they undergo scavenging in sediments.
Show more [+] Less [-]Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Full text
2018
Frère, Laura | Maignien, Loïs | Chalopin, Morgane | Huvet, Arnaud | Rinnert, Emmanuel | Morrison, Hilary | Kerninon, Sandrine | Cassone, Anne-Laure | Lambert, Christophe | Reveillaud, Julie | Paul-Pont, Ika | Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie des Environnements Extrêmophiles (LM2E) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Marine Biological Laboratory (MBL) ; University of Chicago | LABOCEA Laboratoire [Plouzané, France] | Animal, Santé, Territoires, Risques et Ecosystèmes (UMR ASTRE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA) | ANR-15-CE34-0006,Nanoplastics,Microplastiques, nanoplastiques dans l'environnement marin: caractérisation, impacts et évaluation des risques sanitaires.(2015)
International audience | Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3-1 vs. 1-2 vs. 2-5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ± 4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring
Show more [+] Less [-]