Refine search
Results 1-10 of 749
Geochemical Indices for the Assessment of Chemical Contamination Elements in Sediments of the Suches River, Peru
2022
Salas-Mercado, Dante | Hermoza-Gutierrez, Marian | Belizario-Quispe, Germán | Chaiña, Fermín | Quispe, Edgar | Salas-Ávila, Dante
The purpose of this study was to evaluate the concentrations of potentially toxic elements in the Suches river using standardized geochemical indices and to identify the main sources of contamination in the section from the Suches lagoon up to 33.8 km downstream of the effluent river, in the district of Cojata, Puno, Peru. The concentration of Al, Ba, Co, Fe, M, Ni, P, V and Zn in sediments of the Suches river was determined by means of mass spectrometry from October 2019 to February 2020. The values of Co, Fe, Mn, Ni, P and Zn exceeded the base values of contamination according to the general geological references while Al, Ba and V, did not surpass them. The contamination factor showed that the elements Co and Ni revealed a very high level of contamination, while the Zn, a considerable level. The area has an average pollution load index value of 2.24, indicating moderate general pollution. The elements Co, Ni, Al and Zn were within the moderate and extreme classification according to the pollution index. The Spearman's correlation analysis allowed determining the association between Al, Fe, Mn, P and V, which share a natural origin and the accumulation of these elements is due to the effects of weathering and soil erosion. The evaluation of the contamination indices and the correlation confirm that Cobalt, Nickel and Zinc are toxic elements associated with gold mining and agricultural activities.
Show more [+] Less [-]Annual Effective Dose Assessment of Radon in Drinking Water from Abandoned Tin and Cassiterite Mining Site in Oyun, Kwara State, Nigeria
2022
Orosun, Muyiwa Michael | Ajibola, Taiye Benjamin | Ehinlafa, Olusegun Emmanuel | Issah, Ahmad Kolawole | Salawu, Banji Naheem | Ishaya, Sunday Danladi | Ochommadu, Kelechi Kingsley | Adewuyi, Abayomi Daniel
Mining activities are generally known to enhance the concentration of primordial radionuclides in the environment thereby contributing immensely to human exposure to ionizing radiation of terrestrial origin. Thus, the abandoned Tin and Cassiterite mining site in Oyun, Kwara State, Nigeria, is believed to cause radiological implications on local residents. Assessment of radon concentration in surface water from the study area was carried out using RAD7-Active Electronic detector big bottle system. In order to ascertain the risk or hazard incurable in consuming such water, 12 samples were analysed and used in the estimation of annual effective dose of radon. The measured maximum and minimum radon concentrations were found to be 44.95 and 21.03 Bq/L with average of 35.86 Bq/L. These values are quite greater than the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) recommended limits of 11.1.Bq/L. The estimated total effective dose (AEDEtotal) was found to be within the range of 206.52 and 441.41 μSvy-1, and an average of 352.20 μSvy-1 for Adults, 283.30 and 605.47 μSvy-1, and average of 483.10 μSvy-1 for Children, and finally, 321.70 and 687.47 μSvy-1 with average of 548.64 μSvy-1 for Infants, respectively. These values were higher than the recommended limit of 100 µSvy-1 and 200 µSvy-1 for adult and children respectively. Furthermore, worries should be noted about the probabilistic cumulative effect on the consumers of such water if the ingestion is for an extended period of time.
Show more [+] Less [-]Growth and physiological responses of tree seedlings to oil sands non-segregated tailings
2020
Zhang, Wen-Qing | Fleurial, Killian | Sherr, Ira | Vassov, Robert | Zwiazek, Janusz J.
Bitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined. In the present study, we investigated the effects of NST on seedlings of three species of plants commonly planted in oil sands reclamation sites including paper birch (Betula papyrifera), white spruce (Picea glauca) and green alder (Alnus viridis). In the controlled-environment study, we grew seedlings directly in NST and in the two types of reclamation soils with and without added NST and we measured seedling growth, gas exchange parameters, as well as tissue concentrations of selected elements and foliar chlorophyll. White spruce seedlings suffered from severe mortality when grown directly in NST and their needles contained high concentrations of Na. The growth and physiological processes were also inhibited by NST in green alder and paper birch. However, the addition of top soil and peat mineral soil mix to NST significantly improved the growth of plants, possibly due to a more balanced nutrient uptake. It appears that NST may offer some advantages in terms of site revegetation compared with the traditional oil sands tailings that were used in the past. The results also suggest that, white spruce may be less suitable for planting at reclamation sites containing NST compared with the two studied deciduous tree species.
Show more [+] Less [-]Arsenic concentrations, distributions and bioaccessibilities at a UNESCO World Heritage Site (Devon Great Consols, Cornwall and West Devon Mining Landscape)
2020
Braungardt, Charlotte | Chen, Xiaqing | Chester-Sterne, Daniel | Quinn, James G.A. | Turner, Andrew
Devon Great Consols (DGC) is a region in south west England where extensive mining for Cu, Sn and As took place in the nineteenth century. Because of its historical and geological significance, DGC has protected status and is part of the Cornwall and West Devon Mining Landscape UNESCO World Heritage Site. Recently, the region was opened up to the public with the construction or redevelopment of various trails, tracks and facilities for walking, cycling and field visits. We used portable x-ray fluorescence spectrometry to measure, in situ, the concentrations of As in soils and dusts in areas that are accessible to the public. Concentrations ranged from about 140 to 75,000 μg g⁻¹ (n = 98), and in all but one case exceeded a Category 4 Screening Level for park-type soil of 179 μg g⁻¹. Samples returned to the laboratory and fractionated to <63 μm were subjected to an in vitro assessment of both oral and inhalable bioaccessibility, with concentrations ranging from <10 to 25,500 μg g⁻¹ and dependent on the precise nature and origin of the sample and the physiological fluid applied. Concentrations of As in PM₁₀ collected along various transects of the region averaged over 30 ng m⁻³ compared with a typical concentration in UK air of <1 ng m⁻³. Calculations using default EPA and CLEA estimates and that factor in for bioaccessibility suggest a 6-h visit to the region results in exposure to As well in excess of that of minimum risk. The overall risk is exacerbated for frequent visitors to the region and for workers employed at the site. Based on our observations, we recommend that the remodelling or repurposing of historical mine sites require more stringent management and mitigation measures.
Show more [+] Less [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
Show more [+] Less [-]Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions
2020
Sun, Xiaoxu | Kong, Tianle | Xu, Rui | Li, Baoqin | Sun, Weimin
Due to extensive mining and industrial activities, arsenic (As) and antimony (Sb) contaminations are becoming a global environmental concern. Both As and Sb are toxic and carcinogenic metalloids from the group 15 in the periodic table. Since As and Sb share many similar geochemical properties, it is often assumed that they exert similar environmental pressure on the native microbial communities. This hypothesis, however, still requires further confirmation. In the current study, a systematic comparison of microbial responses to As and Sb contamination were conducted. The results suggested that regular geochemical parameters, such as pH, nitrate, and TOC, were the driving forces for shaping the microbial community. In correspondence, two heavily contaminated groups showed similar microbial community compositions and the same microbial populations were enriched. The interactions between the contaminant fractions (As and Sb related fractions) and the individual OTUs, however, suggested the different and more diverse impacts of As comparing to Sb fractions, with more taxa significantly impacted by As species comparing to Sb species. The identification of the keystone taxa in the heavily contaminated samples revealed a group of microbial populations that could survive in both As and Sb heavily contaminated conditions and may providing critical environmental services to the community. Further investigation of these key microbial populations may provide valuable insights on employing these microorganisms for remediation applications.
Show more [+] Less [-]Lead contamination from gold mining in Yellowknife Bay (Northwest Territories), reconstructed using stable lead isotopes
2020
Pelletier, Nicolas | Chételat, John | Cousens, Brian | Zhang, Shuangquang | Stepner, Dan | Muir, Derek C.G. | Vermaire, Jesse C.
The contributions of contaminant sources are difficult to resolve in the sediment record using concentration gradients and flux reconstruction alone. In this study, we demonstrate that source partitioning using lead isotopes provide complementary and unique information to concentration gradients to evaluate point-source releases, transport, and recovery of metal mining pollution in the environment. We analyzed eight sediment cores, collected within 24 km of two gold mines, for Pb stable isotopes, Pb concentration, and sediment chronology. Stable Pb isotope ratios (²⁰⁶Pb/²⁰⁷Pb, ²⁰⁸Pb/²⁰⁴Pb) of mining ore were different from those of background (pre-disturbance) sediment, allowing the use of a quantitative mixing model. As previously reported for some Arctic lakes, Pb isotope ratios indicated negligible aerosol inputs to sediment from regional or long-range pollution sources, possibly related to low annual precipitation. Maximum recorded Pb flux at each site reached up to 63 mg m⁻² yr⁻¹ in the period corresponding to early years of mining when pollution mitigation measures were at a minimum (1950s–1960s). The maximum contribution of mining-derived Pb to these fluxes declined with distance from the mines from 92 ± 8% to 8 ± 4% at the farthest site. Mining-derived Pb was still present at the sediment surface within 9 km of Giant Mine more than ten years after mine closure (5–26 km, 95% confidence interval) and model estimates suggest it could be present for another ∼50–100 years. These results highlight the persistence of Pb pollution in freshwater sediment and the usefulness of Pb stable isotopes to quantify spatial and temporal trends of contamination from mining pollution, particularly as concentrations approach background.
Show more [+] Less [-]Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities
2020
Turna Demir, Fatma | Yavuz, Mustafa
Heavy metal contamination is a serious environmental problem commonly monitored in various organisms. Small wild rodents are ideal biological monitors to show the extent of environmental pollution. The aim of this study was to evaluate the adverse effects of marble and stone quarries on the Levant vole, Microtus guentheri, inhabiting some polluted sites. In this context, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze distribution of thirteen heavy metals (Fe, Al, Zn, Cu, Cr, Mn, Ni, B, Pb, As, Co, Cd, and Hg) in the organs (skins, bones, muscles, livers and kidneys) of the biological specimens, and the comet assay revealed DNA damage in blood lymphocytes for the first time. This study was conducted at close to the marble and stone quarries at Korkuteli, Antalya-Turkey during spring, summer, autumn (2017) and winter (2018) seasons. In spring and summer, genetic damage in blood lymphocytes from all polluted sites (sites 1–5) was significantly higher than that of controls, while in autumn it was higher in samples from three sites (sites 3–5). In terms of heavy metal distribution in organs, we found depositions of Fe, Al, Zn, Ni, Mn, Cr, Co, As and Pb primarily in the skin with its derivatives, Cu and Cd deposits in the kidney, Cu, Cd and B deposits in the liver, and As and Pb depositions in the bones. The study shows that certain organs (especially skin with its derivatives) and blood lymphocytes of Levant vole can be used as ideal indicators of heavy metal pollution. Our results suggest that the Korkuteli area could already be under the threat of heavy metal pollution.
Show more [+] Less [-]Arsenic, chromium, and other elements of concern in fish from remote boreal lakes and rivers: Drivers of variation and implications for subsistence consumption
2020
Lescord, Gretchen L. | Johnston, Thomas A. | Heerschap, Matthew J. | Keller, W (Bill) | Southee, F Meg | O’Connor, Constance M. | Dyer, Richard D. | Branfireun, Brian A. | Gunn, John M.
Eating fish provides numerous health benefits, but it is also a dominant pathway for human exposure to contaminants. Many studies have examined mercury (Hg) accumulation in fish, but fewer have considered other elements, such as arsenic (As) and chromium (Cr). Recently, freshwater fish from several pristine boreal systems across northern Ontario, Canada, have been reported with elevated concentrations of As and Cr for reasons that are not well understood. Our goal was to investigate the ecological and environmental influences over concentrations of As, Cr, and other elements in these fish to better understand what affects metal uptake and the risk to consumers. We measured 10 elements (including As, Cr, Hg) as well as carbon (δ¹³C), nitrogen (δ¹⁵N), and sulfur (δ³⁴S) stable isotopes in 388 fish from 25 lake and river sites across this remote region. These data were used to determine the effect of: 1) trophic ecology; and 2) watershed geology on piscine elemental content. Overall, most element concentrations were low, often below provincial advisory benchmarks (ABs). However, traces of Hg, As, Cr, and selenium (Se) were detected in most fish. Based on their exceedance of their respective ABs, the most restrictive elements on fish consumption in these boreal systems were Hg > As > Cr. Arsenic and Se, but not Cr concentrations were related to fish size and trophic ecology (inferred from δ¹³C and δ¹⁵N), suggesting bioaccumulation of the former elements. Fish with enriched δ³⁴S values, suggestive of anadromous behaviour, had marginally lower Hg but higher Se concentrations. Modeling results suggested a strong effect of site-specific factors, though we found weak trends between piscine elemental content and geological features (e.g., mafic intrusions), potentially due to the broad spatial scale of this study. Results from this study address gaps in our understanding of As and Cr bioaccumulation and will help to inform fish consumption guidelines.
Show more [+] Less [-]Cadmium source identification in soils and high-risk regions predicted by geographical detector method
2020
Zhao, Yinjun | Deng, Qiyu | Lin, Qing | Zeng, Changyu | Zhong, Cong
Cadmium (Cd) contamination in soils has become a serious and widespread environmental problem, especially in areas with high natural background Cd values, but the mechanism of Cd enrichment in these areas is still unclear. This study uses the Guangxi Zhuang Autonomous Region (Guangxi), a typical area with a high background Cd level and Cd pollution related to mining activities, as an example to explore the source and predict areas with high Cd risk in soils based on the geographical detector method. The areas with high Cd in Guangxi soils were classified into non-mining areas and mining areas according to their potential Cd sources. The results show that the rich Cd content in the soils from the non-mining area of Guangxi was mainly derived from the soil type (q = 0.34), geological age (q = 0.27), rock type (q = 0.26) and geomorphic type (q = 0.20). Specifically, the Cd content was derived from the weathering and deposition processes of carbonatite from the Carboniferous system in the karst area. The high Cd content in the soils of the mining area of Guangxi was mainly derived from the area mined for mineral resources (q = 0.08) and rock type (q = 0.05). Specifically, the Cd content was derived from the mining of lead-zinc ores. The areas in Guangxi with a high risk of Cd soil pollution are mostly concentrated in karst areas, such as Hechi, Laibin, Chongzuo, southern Liuzhou and Baise, northern Nanning city and northeastern Guilin city, and some mining areas. These results indicated that the high Cd concentration in the soils of large areas of Guangxi is probably due to natural sources, while the high Cd concentration around mining areas is due to anthropogenic sources. The results will be useful for soil restoration and locating and controlling contaminated agricultural land.
Show more [+] Less [-]