Refine search
Results 1-10 of 31
Prediction of N2O emission from local information with Random Forest Full text
2013
Philibert, Aurore, A. | Loyce, Chantal | Makowski, David | Agronomie ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Nitrous oxide is a potent greenhouse gas, with a global warming potential 298 times greater than that of CO2. In agricultural soils, N2O emissions are influenced by a large number of environmental characteristics and crop management techniques that are not systematically reported in experiments. Random Forest (RF) is a machine learning method that can handle missing data and ranks input variables on the basis of their importance. We aimed to predict N2O emission on the basis of local information, to rank environmental and crop management variables according to their influence on N2O emission, and to compare the performances of RI: with several regression models. RF outperformed the regression models for predictive purposes, and this approach led to the identification of three important input variables: N fertilization, type of crop, and experiment duration. This method could be used in the future for prediction of N2O emissions from local information. (c) 2013 Elsevier Ltd. All rights reserved.
Show more [+] Less [-]Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils : a statistical modeling approach Full text
2012
Pelfrene, Aurélie | Waterlot, Christophe | Mazzuca, Muriel | Nisse, Catherine | Cuny, Damien | Richard, Antoine | Denys, Sébastien | Heyman, Christophe | Roussel, Hélène | Bidar, Géraldine | Douay, Francis | Université de Lille | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Impact de l'environnement chimique sur la santé humaine - ULR 4483 (IMPECS) ; Université de Lille-Centre Hospitalier Régional Universitaire [CHU Lille] (CHRU Lille) | Centre Hospitalier Régional Universitaire [CHU Lille] (CHRU Lille) | Laboratoire des Sciences Végétales et Fongiques ; Université de Lille, Droit et Santé | Laboratoire d'Analyses des Sols (LAS) ; Institut National de la Recherche Agronomique (INRA) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Cellule Interrégionale d'Epidémiologie ; Cellule Interrégionale d'Epidémiologie | Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME)
Environ Pollut 859TF Times Cited:2 Cited References Count:50 | International audience | An investigation was undertaken to identify the most significant soil parameters that can be used to predict Cd, Pb, and Zn bioaccessibility in smelter-contaminated agricultural soils. A robust model was established from an extended database of soils by using : a training set of 280 samples to select the main soil parameters, to define the best population to be taken into account for the model elaboration, and to construct multivariate regression models, and a test set of 110 samples to validate the ability of the regression models. Total carbonate, organic matter, sand, P2O5, free Fe-Mn oxide, and pseudo total Aland trace element (TE) contents appeared as the main variables governing TE bioaccessibility. The statistical modeling approach was reasonably successful, indicating that the main soil factors influencing the bioaccessibility of TEs were taken into account and the predictions could be applicable for further risk evaluation in the studied area.
Show more [+] Less [-]Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties Full text
2019
Mojid, M.A. | Hossain, A.B.M.Z. | Ashraf, M.A.
Measurement of solute-transport parameters through soils for a wide range of solute- and soil-types is time-consuming, laborious, expensive and practically impossible. So, indirect methods for estimating the transport parameters by pedo-transfer functions are now advancing. This study developed and evaluated an Artificial Neural Network (ANN) model for estimating the transport velocity (V), dispersion coefficient (D) and retardation factor (R) of NaAsO₂, Pb(NO₃)₂, Cd(NO₃)₂, C₉H₉N₃O₂ and CaCl₂ from the basic soil properties. Breakthrough data of the solutes were measured in 14 agricultural soils of Bangladesh by time-domain reflectometry (TDR) in repacked soil columns under unsaturated steady-state water-flow conditions. The transport parameters of the chemicals were determined by analyzing the solute breakthrough data. Bulk density (γ), organic carbon (OC), clay (C) content, pH, median grain diameter (D₅₀) and uniformity coefficient (Cᵤ) of the soils were determined. An ANN model for V, D and R was developed by using data of eight soils, validated/tested with the data of five soils and verified with the data of one soil. Clay content and bulk density of the soils were the most sensitive input variables to the ANN model followed by other soil properties (OC, C, pH, D₅₀ and Cᵤ). The model reliably predicted V, D and R with relative root-mean-square error (RRMSE) of 0.028–0.363, mean error (ME) of – 0.00004 to 0.0005, bias error (BOE%) of 0–0.003 and modeling efficiency (EF) of >0.99. Thus, the ANN model can significantly enhance prediction of pollution transport through soils in terms of cost and effort.
Show more [+] Less [-]Numerical evaluation of bioaccumulation and depuration kinetics of PAHs in Mytilus galloprovincialis Full text
2017
Yakan, S.D. | Focks, A. | Klasmeier, J. | Okay, O.S.
Polycyclic aromatic hydrocarbons (PAHs) are important organic pollutants in the aquatic environment due to their persistence and bioaccumulation potential both in organisms and in sediments. Benzo(a)anthracene (BaA) and phenanthrene (PHE), which are in the priority pollutant list of the U.S. EPA (Environmental Protection Agency), are selected as model compounds of the present study. Bioaccumulation and depuration experiments with local Mediterranean mussel species, Mytilus galloprovincialis were used as the basis of the study. Mussels were selected as bioindicator organisms due to their broad geographic distribution, immobility and low enzyme activity. Bioaccumulation and depuration kinetics of selected PAHs in Mytilus galloprovincialis were described using first order kinetic equations in a three compartment model. The compartments were defined as: (1) biota (mussel), (2) surrounding environment (seawater), and (3) algae (Phaeodactylum tricornutum) as food source of the mussels. Experimental study had been performed for three different concentrations. Middle concentration of the experimental data was used as the model input in order to represent other high and low concentrations of selected PAHs. Correlations of the experiment and model data revealed that they are in good agreement. Accumulation and depuration trend of PAHs in mussels regarding also the durations can be estimated effectively with the present study. Thus, this study can be evaluated as a supportive tool for risk assessment in addition to monitoring studies.
Show more [+] Less [-]Combining measurements and modelling to quantify the contribution of atmospheric fallout, local industry and road traffic to PAH stocks in contrasting catchments Full text
2014
Gateuille, David | Evrard, Olivier | Lefevre, Irène | Moreau-Guigon, Elodie | Alliot, Fabrice | Chevreuil, Marc | Mouchel, J.-M. (Jean-Marie)
Various sources supply PAHs that accumulate in soils. The methodology we developed provided an evaluation of the contribution of local sources (road traffic, local industries) versus remote sources (long range atmospheric transport, fallout and gaseous exchanges) to PAH stocks in two contrasting subcatchments (46–614 km²) of the Seine River basin (France). Soil samples (n = 336) were analysed to investigate the spatial pattern of soil contamination across the catchments and an original combination with radionuclide measurements provided new insights into the evolution of the contamination with depth. Relationships between PAH concentrations and the distance to the potential sources were modelled. Despite both subcatchments are mainly rural, roadside areas appeared to concentrate 20% of the contamination inside the catchment while a local industry was found to be responsible for up to 30% of the stocks. Those results have important implications for understanding and controlling PAH contamination in rural areas of early-industrialized regions.
Show more [+] Less [-]Assessment of heavy metal pollution and exposure risk for migratory birds- A case study of Caohai wetland in Guizhou Plateau (China) Full text
2021
Xia, Pinhua | Ma, Li | Yi, Yin | Lin, Tao
Increasing heavy metal pollution in wetland ecosystems around the world pose significant health risks to waterbirds, especially the endangered species. We analyzed heavy metal pollution in bird foraging area of Caohai wetland in Guizhou Plateau (China), and used an integrated exposure risk model for assessing heavy metal (Cd, Pb, Cr, Ni, Zn, Sb) exposure risk in birds from the soil, water, plants and benthic invertebrates. There is considerable variation in the extent of heavy metal contamination across the different sampling sites, and Cd and Sb are the main contaminants. The mussel Anodonta showed greater heavy metal accumulation (except for Zn) compared to the snail species C. cathayensis. The different plant species also varied in terms of amount for accumulated heavy metals. The phytophagous together with omnivorous birds were exposed to Cd, Pb, Zn and Ni through plants rather than the soil, whereas the maximum Zn exposure in the omnivorous and carnivorous birds was through consumption of benthic invertebrates. Furthermore, the phytophagous black-necked cranes (Grus nigricollis) were less risk to heavy metal exposure compared to the omnivorous bar-headed goose (Anser indicus) and carnivorous ruddy shelducks (Tadorna ferruginea). The exposure risk of Cr (8.1) was highest, followed by Pb (5.1), Zn (3.8), Sb (1.0), Cd (0.33) and Ni (0.28). The heavy metal assessment heavy metal exposure risk for migratory birds should take into account the exposure from food and soil. Our findings provide new insights into developing measures to minimize heavy metal contamination in migratory birds.
Show more [+] Less [-]Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life Full text
2016
Bakir, Adil | O'Connor, Isabel A. | Rowland, Steven J. | Hendriks, A Jan | Thompson, Richard C.
It has been hypothesised that, if ingested, plastic debris could act as vector for the transfer of chemical contaminants from seawater to organisms, yet modelling suggest that, in the natural environment, chemical transfer would be negligible compared to other routes of uptake. However, to date, the models have not incorporated consideration of the role of gut surfactants, or the influence of pH or temperature on desorption, whilst experimental work has shown that these factors can enhance desorption of sorbed contaminants several fold. Here, we modelled the transfer of sorbed organic contaminants dichlorodiphenyltrichloroethane (DDT), phenanthrene (Phe) and bis-2-ethylhexyl phthalate (DEHP) from microscopic particles of polyvinylchloride (PVC) and polyethylene (PE) to a benthic invertebrate, a fish and a seabird using a one-compartment model OMEGA (Optimal Modelling for EcotoxicoloGical Applications) with different conditions of pH, temperature and gut surfactants. Environmental concentrations of contaminants at the bottom and the top of published ranges were considered, in combination with ingestion of either 1 or 5% by weight of plastic. For all organisms, the combined intake from food and water was the main route of exposure for Phe, DEHP and DDT with a negligible input from plastic. For the benthic invertebrate, predictions including the presence of contaminated plastic resulted in very small increases in the internal concentrations of DDT and DEHP, while the net change in the transfer of Phe was negligible. While there may be scenarios in which the presence of plastic makes a more important contribution, our modelling study suggests that ingestion of microplastic does not provide a quantitatively important additional pathway for the transfer of adsorbed chemicals from seawater to biota via the gut.
Show more [+] Less [-]Influence of land use on human bioaccessibility of metals in smelter-impacted soils Full text
2013
Pelfrêne, Aurélie | Waterlot, Christophe | Douay, Francis
An investigation was undertaken to evaluate the empirical model developed by Pelfrêne et al. (2012), predicting the human bioaccessibility of Cd and Pb in smelter-contaminated agricultural topsoils, by including other soil uses: 50 urban and 65 woody habitat topsoils collected in the same area. The results showed that land use significantly affected the pseudototal metal concentrations and their oral bioaccessibility. However, whatever the soil's physicochemical parameters and degree of contamination, the ‘agricultural’ model can be used to simulate metal gastric bioaccessibility in urban and woody habitat soils. To simulate gastrointestinal bioaccessibility, this model can be used directly if the pseudototal metal concentrations are on the same order of magnitude as those usually recorded in the agricultural soils studied or after the use of a correction factor if these concentrations are greater. These results showed that the oral bioaccessibility predictions could be applicable for further environmental risk evaluation.
Show more [+] Less [-]Predicting sublethal effects of herbicides on terrestrial non-crop species in the field from greenhouse data Full text
2008
Riemens, M.M. | Dueck, T.A. | Kempenaar, C.
Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field.
Show more [+] Less [-]Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity Full text
2017
Colbach, Nathalie | Darmency, Henri | Fernier, Alice | Granger, Sylvie | Le Corre, Valérie | Messean, Antoine | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA) | INRA, the European project AMIGA (Assessing and Monitoring Impacts of Genetically modified plants on Agro-ecosystems) [FP7-KBBE-2011-5-CP-CSA]; French project CoSAC [ANR-14-CE18-0007]; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Ecology; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Agriculture | ANR-14-CE18-0007,CoSAC,Conception de Stratégies durables de gestion des Adventices dans un contexte de Changement (climat, pratiques agricoles, biodiversité)(2014)
Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity Full text
2017
Colbach, Nathalie | Darmency, Henri | Fernier, Alice | Granger, Sylvie | Le Corre, Valérie | Messean, Antoine | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA) | INRA, the European project AMIGA (Assessing and Monitoring Impacts of Genetically modified plants on Agro-ecosystems) [FP7-KBBE-2011-5-CP-CSA]; French project CoSAC [ANR-14-CE18-0007]; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Ecology; research programme "Assessing and reducing environmental risks from plant protection products" - French Ministry in charge of Agriculture | ANR-14-CE18-0007,CoSAC,Conception de Stratégies durables de gestion des Adventices dans un contexte de Changement (climat, pratiques agricoles, biodiversité)(2014)
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FlorSys; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
Show more [+] Less [-]Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity Full text
2017
Colbach, Nathalie | Darmency, Henri | Fernier, Alice | Granger, Sylvie | Le Corre, Valérie | Messéan, Antoine
Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.
Show more [+] Less [-]