Refine search
Results 1-5 of 5
Metabolic process of di-n-butyl phthalate (DBP) by Enterobacter sp. DNB-S2, isolated from Mollisol region in China
2019
Sun, Ruixue | Wang, Lei | Jiao, Yaqi | Zhang, Ying | Zhang, Xing | Wu, Pan | Chen, Zhaobo | Feng, Chengcheng | Li, Ying | Li, Xiaoqian | Yan, Lilong
The accumulation of phthalate acid esters (PAEs) in the environment has aroused a global concern. Microbial degradation is the most promising method for removing PAEs from polluted environment. Di-n-butyl phthalate (DBP) is one of the most widely used PAEs. In this study, a highly efficient DBP-degrading strain, Enterobacter sp. DNB-S2 was isolated from Mollisol in northeast China, and the degradation rate of 500 mg L⁻¹ DBP reached 44.10% at 5 °C and 91.08% at 50 °C within 7 days. A new intermediate, n-butyl benzoate BP, was detected, implying a new degradation pathway. The complete genome of the strain DNB-S2 was successfully sequenced to comprehensively understand of the entire DBP catabolic process. Key genes were proposed to be involved in DBP degradation, such as esterases, 3,4-dihydroxybenzoate decarboxylase and catechol 2,3-dioxygenase genes. Intermediate-utilization tests and real-time quantitative polymerase chain reaction (RT-qPCR) validated the proposed DBP catabolic pathway. The aboriginal bacterium DNB-S2 is a promising germplasm for restoring PAE-contaminated Mollisol regions at low temperature. This study provides novel insight into the catabolic mechanisms and abundant gene resources of PAE biodegradation.
Show more [+] Less [-]Influence of selected cyclodextrins in sorption-desorption of chlorpyrifos, chlorothalonil, diazinon, and their main degradation products on different soils
2017
Báez, MaríaE. | Espinoza, Jeannette | Silva, Ricardo | Fuentes, Edwar
Cyclodextrins (CDs) can improve the apparent solubility and bioavailability of a variety of organic compounds through the formation of inclusion complexes; accordingly, they are suitable for application in innovative remediation technologies of contaminated soils. However, the different interactions in the tertiary system CD/contaminant/soil matrix can affect the bioavailability of the inclusion complex through the possible sorption of CD and CD complex in the soil matrix, as well as with the potential of the sorbed CD to form the complex, concurrent with the desorption processes. This work focuses in changes produced by three different CDs in soil sorption-desorption processes of chlorpyrifos (CPF), diazinon (DZN), and chlorothalonil (CTL), and their major degradation products, 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidinol, and hydroxy-chlorothalonil (OH-CTL). Cyclodextrins used were β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Mβ-CD), and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The studied soils belong to the orders Andisol, Ultisol, and Mollisol with different organic matter contents, mineral composition, and pH. The apparent sorption constants were significantly lower for the three pesticides in the presence of all CDs. The highest displacement of sorption equilibria was produced by the influence of Mβ-CD, with the most pronounced effect for CPF, a pesticide strongly sorbed on soils. The same was obtained for TCP and OH-CTL, highlighting the need to assess the risk of generating higher levels of groundwater contamination with polar metabolites if degradation rates are not controlled. The highest desorption efficiency was obtained for the systems CPF-β-CD, DZN-Mβ-CD, and CTL-Mβ-CD. Since the degree of adsorption of the complex is relevant to obtain an increase in the bioavailability of the contaminant, a distribution coefficient for the complexed pesticide in all CD–soil–pesticide system was estimated by using the apparent sorption coefficients, the stability constant for each CD–pesticide complex, and the distribution coefficients of free pesticide.
Show more [+] Less [-]Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins
2018
Báez, María E. | Espinoza, Jeannette | Fuentes, Edwar
The intensive use of insecticides such as chlorpyrifos (CPF) and diazinon (DZN) in the agricultural activities worldwide has produced contamination of soils and/or transport to non-target areas including their distribution to surface and groundwaters. Cyclodextrins (CDs) have been proposed as an alternative in remediation technologies based on the separation of contaminants from soils because they could allow a higher bioavailability for their degradation with a low environmental impact. In this work, the degradation pattern of CPF and DZN and the formation and dissipation of the major degradation products 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMPH) was established in four agricultural volcanic and non-volcanic soils belonging to Andisol, Ultisol, and Mollisol orders. Both pesticides were highly adsorbed in these soils, consequently, with a greater probability of contaminating them. In contrast, the adsorption of their two main metabolites was low or null; therefore, they are potential groundwater contaminants. The degradation processes were studied in the natural and amended soils with β-cyclodextrin (β-CD) and methyl-β-cyclodextrin (Mβ-CD) for CPF and DZN, respectively. A slow degradation of CPF and DZN was obtained for volcanic soils with observable residues until the end of the incubation time (150–180 days). In Mollisols, the higher degradation rate of CPF was favored by the neutral to basic pH, and for DZN it was related to the lower adsorption and higher bioavailability. The amendment of soils with CDs produced slower degradation rates which led to a greater concentration of the compounds at the end of the incubation time. This effect was more pronounced for DZN. The exception was the Andisol, with no significant changes for both compounds regarding the unamended soil. No residues of TCP were observed for this soil in both conditions during the whole incubation time; nevertheless, the accumulation of TCP was significant in the Ultisol and Mollisols, but the concentrations were lower for the amended soils. The accumulation of IMPH was important in Mollisol amended soils; however, their residues were observed in the volcanic soils during the whole incubation period in the natural and amended soils. An important enhancement of the microbial activity occurred in the system β-CD/CPF in Mollisols, without a more effective degradation of the insecticide. The opposite effect was observed in the system Mβ-CD/DZN mainly in the oxidative activity in all soils. The higher degradation of DZN and IMPH in natural Mollisols was related to the higher hydrolytic and oxidative activities. The stability of the inclusion complexes formed could play an important role for explaining the results obtained with the amendments.
Show more [+] Less [-]Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China
2016
Yan, Li | Zhang, Zhi-Dan | Zhang, Jin-Jing | Gao, Qiang | Feng, Guo-Zhong | Abelrahman, A. M. | Chen, Yuan
Traditional fertilization led to higher apparent N surplus, and optimized fertilization can reduce residual nitrogen in soils with keeping high yield. But in continuous spring maize cropping zone in Mollisol in Northeast China, the effect of the optimized N management on N balance and comprehensive environment was not clear. The primary objective of this study was to compare the differences of two fertilizations (traditional farmer N management (FNM) with single basal fertilizer and improvement N management (INM) by soil testing with top-dressing) in gain yield, N uptake and N efficiency, soil N balance, reactive N losses, and environment assessment. The results showed that INM treatment has no remarkable effect on grain yield and N uptake; N partial factor productivity (PFPN) of INM treatment was 19.8 % significantly higher than the FNM treatment. Nₘᵢₙ in soils of INM treatment reached to 111.0 kg ha⁻¹, which was 27.1 % lower than the FNM treatment after 6 years of continuous maize cropping; the apparent N Losses (ANL) and apparent N surplus (ANS) of INM were only half of FNM by soil N balance analysis. In reactive N losses, comparing with FNM treatment, INM treatment reduced NH₃ volatilization, N₂O emission, N leaching, and N runoff by 17.8, 35.6, 45, and 38.3 %, respectively, during planting period, and in integrated environment assessment by life cycle assessment (LCA) method, producing 1 t maize grain, energy depletion, acidification, eutrophication, and climate change impacts of INM treatment decreased 26.19, 30.16, 32.61, and 22.75 %, respectively. Therefore, INM treatment is a better N management strategy in comprehensive analysis.
Show more [+] Less [-]Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: interpretation of interactions through two-way principal component analysis
2015
Báez, María E. | Espinoza, Jeannette | Silva, Ricardo | Fuentes, Edwar
Sorption-desorption behavior of six pesticides and some degradation products was assessed on seven agricultural volcanic and nonvolcanic soils belonging to Andisol, Ultisol, Mollisol, and Alfisol orders. The global interpretation of sorption data was performed by principal component analysis. Results showed exceptionally high sorption of glyphosate and aminomethylphosphonic acid (AMPA) (the breakdown product) on volcanic soils (K f > 1500 μg¹ ⁻ ¹ / ⁿ mL¹ / ⁿ g⁻¹) related mainly to contents of amorphous aluminum oxides (Andisols) and crystalline minerals (Ultisols). The lower sorption on nonvolcanic soils was associated to low organic matter contents and lack of significant minerals. Metsulfuron-methyl and 3,5,6-trichloro-2-pyridinol (metabolite of chlorpyrifos) were weakly to substantially sorbed on Andisols and Ultisols, but the first one was not sorbed at pH > 6.4, including nonvolcanic soils. The metabolite of diazinon, 2-isopropyl-4-methyl-6-hydroxypyrimidine, was weakly sorbed on all soils (K f = 0.4 to 3.6 μg¹ ⁻ ¹ / ⁿ mL¹ / ⁿ g⁻¹). Acidic compounds would be lixiviated in Mollisols and Alfisols, but they could leach also in Andisols and Ultisols if they reach greater depths. Atrazine and deethylatrazine sorption was related to organic carbon content; therefore, they were weakly retained on nonvolcanic soils (K f = 0.7 to 2.2 μg¹ ⁻ ¹ / ⁿ mL¹ / ⁿ g⁻¹). Chlorpyrifos was highly sorbed on all soils reaching K OC values of >8000. Finally, the significant retention of chlorothalonil and diazinon on Mollisols and Alfisols in spite of their low OC contents showed the contribution of clay minerals in the sorption process.
Show more [+] Less [-]